640 likes | 799 Views
The NA62 Gigatracker. presented by A. Kluge CERN/PH-ESE June 10, 2010.
E N D
The NA62 Gigatracker presented by A. Kluge CERN/PH-ESE June 10, 2010 A. Klugea, G. AglieriRinellaa, V. Carassitic , A. Ceccucci, E. Cortina, J. Daguin, G. Dellacasab, M. Fiorinia, S. Garbolinb, P. Jarrona, J. Kaplona, F. Marchettob, E. Martina,d, A. Mapellia,e, G. Mazzab, M. Morela, M. Noya, G. Nüssle, P. Petagna, L. Perktolda, A. Cotta Ramusinoc, P. Riedlera, A. Rivettib, R. Wheadonb a CERN, Geneva Switzerland, bINFN Torino, Italy, cINFN Ferrara, Italy, dUCL Louvain la Neuve, Belgium, dEPFL LausanneSwitzerland
Outline • NA62, introduction, challenge • GigaTracker • specifications, module, beam/data rate • electronics architecture • demonstrator ASICs • cooling • Summary A. Kluge
NA62 - Introduction A. Kluge
Experimental setup- NA62 hit correlation via matching of arrival times – 100 ps selects particleswith 75 GeV/c GTK seesall particles straw chambers measure position RICH identifies pions Mag2 Mag3 seeskaons only straw chambers RICH A. Kluge GTK3 GTK1 Cedar GTK2 Achromat Mag1 Mag4 250 m Vacuum tank beam: hadrons, only 6%kaons-> only 20% of charged kaon decay in the vacuum tank-> out of which only 10-11 decays are of interest (pion-neutrino-antineutrino) A. Kluge
Experimental setup- NA62 beam: hadrons, only 6%kaons -> 0.06 only 20% of charged kaon decay in the vacuum tank -> 0.20 out of which only 10-11 decays are of interest -> 10-11decay into one pion, one neutrino and one anti-neutrino ______________________________________________________________________________ total probability1.2 x 10-13 • 100 events of kaon -> pion/neutrino/antineutrinoany deviation from standard model -> new physics A. Kluge
Experimental setup: GTK specifications 200 ps per station 300 µm 100 pstime binning of arrival time 300 µm 800 MHz particle rate A. Kluge
Experimental setup: GTK specifications 300 µm thin, 200µm sensor + 100 µm chip(<0.5% of X0), operated in vacuum 100 pstime resolution arrival time 300 µm A. Kluge
Beam & detector configuration A. Kluge
Beam profile 60 mm 27 mm A. Kluge
ASIC covering beam 60 mm 12 mm 4.5-6 mm 13.5 mm 27 mm 45 rows times 40 columns per chip = 1800 pixels per chip A. Kluge
Configuration for beam 27-60 A. Kluge
Giga Tracker setup • Sensor&bonds: 0.24% X0(200 µm Silicon) • RO chip: 0.11% X0(100 µm Silicon) • Structure: 0.10% X0(100 µm Carbon or silicon) • Total: 0.45% X0 uniform A. Kluge
The electronics specification A. Kluge
General: System Specifications A. Kluge
General: System Specifications A. Kluge
The ASIC architecture A. Kluge
Jitter-free pixel signal to TDC in EOC amplifier & discriminator/time-walk-compensator reference clock time-to-digital converter TDC buffering & read-out processor A. Kluge
Precise clock signal to all pixels amplifier & discriminator/ time-walk-compensator& buffering & TDC reference clock buffering & read-out processor A. Kluge
TDC per pixel architecture A. Kluge
The time-to-digital conversion Dual slope TDC A. Kluge
TDC Wilkinson (dual slope) t0= ntclkk2 / k1 t1 t2 U1 k1 k2 0 1 .. n-1 n t0 tclk tclk A. Kluge
time walk A. Kluge
Constant fraction discriminator ta,trailing tb,trailing A. Kluge
End-of-column architecture A. Kluge
The time-to-digital conversion Delay locked loop based TDC A. Kluge
DLL based TDC Pixel cell DAC1 Ref CLK Phase detector & charge pump UP VCTRL PD CP 0 1 2 m-2 m-1 DOWN DLL CLK Clk = tclk TDC A. Kluge
time walk A. Kluge
t2 time-over-threshold A A1 t12 t1clk t t0 t1 tclk A. Kluge
t2 Time-over-threshold A Sb A1 t12 t1clk t t0 t1 tclk A. Kluge
Demonstrator A. Kluge
Demonstrator • On-pixeldual slope TDC with CFD time walk compensation • End-of-columnDLL based TDC with time-over-threshold compensation • 2 demonstrator ASICs • 45 pixel - folded column with full frontend • complete TDC system • reduced read-out and formatting functionality A. Kluge
TDC per pixel architecture A. Kluge
On pixel cell TDC A. Kluge
Layout – on pixel TDC 130µm A. Kluge
Efficiency and calibration A. Kluge
Preliminary pTDC jitter Promising test results A. Kluge
EOC column architecture A. Kluge
45 45 45 45 45 40 Hit Arbiter Hit Arbiter Hit Arbiter Hit Arbiter Addr. Addr. Addr. Addr. 32 Hit Reg2 Hit Reg1 Hit Reg2 Hit Reg1 Hit Reg2 Hit Reg1 Hit Reg2 Hit Reg1 LVDS Ref CLK 320MHz DLL Digital processing serializer 45 x 40 pixel final chip
45 x 1 demonstrator 45 45 Hit Arbiter Addr. 32 Hit Reg2 Hit Reg1 LVDS Ref CLK 320MHz DLL Digital processing serializer
GTK demonstrator ASIC A. Kluge
T1, T2 versus input charge A. Kluge
T1 jitter over input charge 40 – 55 ps 2.4 fC most probable charge A. Kluge
TDC differential/integral non-linearity jitter on TDC 7 ps A. Kluge
Full chain T1 jitter over input charge @ 0.7 fC threshold full chain: preamplifier discriminator transmission line TDC read-out 55 ps for full chain A. Kluge
Full chain T1 rms jitter over pixel position no degradation because of long distance between pixel and TDC A. Kluge
Giga Tracker setup • Sensor&bonds: 0.24% X0(200 µm Silicon) • RO chip: 0.11% X0(100 µm Silicon) • Structure: 0.10% X0(100 µm Carbon fiber) • Total: 0.45% X0 uniform • Readoutchip (12 x 20 mm), power < 3.2W per chip(2 W/cm2) • Vaccuum • Radiation • max. Temperature: 5 degree C,aimingfor -20 degree C A. Kluge
Coolingsystemsunderinvestigation • carbonplate, conductivecooling • microchannels • convectivecooling in a vessel
µ channel cooling A. Kluge
Micro channel cooling Si: 31 x 31 x 1 mm3 surface roughness 160 nm 134 parallel channels: l = 20 mm, w = 67 µm, h = 680 µm, separation 92 µm 255 W/cm2 A. Kluge