1 / 21

SISTEM PERSAMAAN LINIER [ELIMINASI GAUSS-JORDAN]

SISTEM PERSAMAAN LINIER [ELIMINASI GAUSS-JORDAN]. PERTEMUAN 3 RABU, 20 MARET 2013 08.00 – 10.30 WIB [MNJ B] 10.30 – 13.00 WIB [MNJ A] SELASA, 26 MARET 2013 10.00-12.30 WIB [AKT]. Definisi dan Istilah. 1. PERSAMAAN LINIER

jersey
Download Presentation

SISTEM PERSAMAAN LINIER [ELIMINASI GAUSS-JORDAN]

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SISTEM PERSAMAAN LINIER[ELIMINASI GAUSS-JORDAN] PERTEMUAN 3 RABU, 20 MARET 2013 08.00 – 10.30 WIB [MNJ B] 10.30 – 13.00 WIB [MNJ A] SELASA, 26 MARET 2013 10.00-12.30 WIB [AKT] NURUL SAILA

  2. NURUL SAILA

  3. DefinisidanIstilah 1. PERSAMAAN LINIER • Persamaan linier adalahsuatupersamaan yang pangkattertinggidarivariabelnyaadalahsatu. • Persamaan linier dalam n variable x1, x2, …, xnadalahsebuahpersamaan yang dapatdinyatakandalambentuk: a1 x1+ a2 x2 + … + anxn = b dimana a1, a2, …, an, b adalahkonstanta-konstantariil. NURUL SAILA

  4. MenyelesaikanPersamaan Linier Pemecahanpersamaan linier: a1 x1+ a2 x2 + … + anxn = b adalahsebuahurutandari n bilangan s1, s2, …, snsehinggapersamaantersebutdipenuhibilakitamensubstitusikan x1= s1, x2 = s2, …, xn = sn. Himpunansemuapemecahanpersamaantersebutdinamakanhimpunanpemecahannya. NURUL SAILA

  5. Contoh: Tentukanselesaiandaripersamaan-persamaanberikut: • 2x + 3 = -7 • 2x + 3y -2 = 10 • 2x + 3y + 5z + 10 = 15 NURUL SAILA

  6. 2. SistemPersamaan Linier • Sebuahhimpunanberhinggadaripersamaan linier dalam variable-variabel x1, x2, …, xndinamakansebuah system persamaan linier atausebuah system linier. • Sistempersamaan linier yang terdiridari m persamaandalam n variable adalah: NURUL SAILA

  7. Menyelesaikan SPL • Sebuahurutanbilangan-bilangan s1, s2, …, sndinamakansebuahpemecahan system tersebutjika x1= s1, x2 = s2, …, xn = sn.adalahsebuahpemecahandaritiap-tiappersamaandidalam system tersebut. NURUL SAILA

  8. Contoh: Perhatikansistempersamaan linier berikut: 2x + 3y – 5z = -8 -x –y + 15z = 42 5x -2y + z = 11 Hp: {(x, y, z)/ x = 2, y = 1, z = 3} NURUL SAILA

  9. MetodeMenyelesaikan SPL Adabeberapacaramenentukanpemecahan system persamaan linier, yaitu: (1) Eliminasi Gauss (2) Eliminasi Gauss-Jordan (3) Kaidah Cramer (4) PerkalianMatrik NURUL SAILA

  10. Eliminasi Gauss Eliminasi Gauss adalahsuatumetode yang digunakanuntukmenyelesaikansistempersamaan linier, yang meliputilangkah-langkahsbb: • Mengubah system persamaan linier kebentukmatriks yang diperbesar (augmented matrix), yaitumatriks yang entri-entrinyaadalahkoefisiendari variable dankonstantadaripersamaandalam system; • >>> NURUL SAILA

  11. Eliminasi Gauss • Denganmenggunakan OBE, mengubahbentukmatriks yang diperbesarmenjadimatriksbentukeselonbaris (row-echelon form). • Mengubahmatrikeselonbariskebentuksistempersamaan. • Menyelesaikantiappersamaandalamsistem. NURUL SAILA

  12. OperasiBarisElementer(OBE) OperasiBarisElementer (OBE) adalahsuatuoperasi yang dikenakanpadasuatubarismatriks, yaitu: • Kalikansuatubarisdengansebuahkonstanta yang bukan 0. • Pertukarkansebarangduabaris. • Tambahkankelipatandarisuatubariskpdbaris yang lain. NURUL SAILA

  13. Contoh: • OBE 1: Kalikanbaris 1 dengan 2 (2B1) • OBE 2: Pertukarkan B1dengan B2 (B1 B2) • OBE 3: Tambahkan 3B1kepada B2 (B2 + 3B1) NURUL SAILA

  14. MatrikEselonBaris(Row-echelon form) Sifat-sifatmatriksbentukeselonbarisadalahsebagaiberikut: • Jikasebuahbaristidakterdiriseluruhnyadari 0, makabilangantak 0 pertamadidalambaristersebutadalah 1(dinamakan 1 utama). • Jikaadasuatubaris yang terdiriseluruhnyadari 0, makasemuabarissepertiitudikelompokkanbersama-samadibawahmatriks. • Di dalamsebarangduabaris yang berturutan, yang tidakterdiriseluruhnyadari 0, maka 1 utamadidalambaris yang lebihrendahterdapatlebihjauhkekanandaripada 1 utamadidalambaris yang lebihtinggi. NURUL SAILA

  15. Contoh: • Manakahygmerupakanmatrikbentukeselonbaris? • Dengan OBE, ubahlahmatrikberikutmenjadimatrikbentukeselonbaris. NURUL SAILA

  16. Contoh: Tentukanselesaiandarisistempersamaanberikutmenggunakanmetodeeliminasi Gauss. NURUL SAILA

  17. Eliminasi Gauss Jordan Langkah-langkah yang ditempuh, yaitu: • Mengubah system persamaan linier kebentukmatriks yang diperbesar (augmented matrix), yaitumatriks yang entri-entrinyaadalahkoefisiendari variable dankonstantadaripersamaandalam system; • Denganmenggunakan OBE, mengubahbentukmatriks yang diperbesarmenjadimatriksbentukeselonbaris yang direduksi (reduced row-echelon form) NURUL SAILA

  18. Sifat-sifatmatriksbentukeselonbaris yang direduksiadalahsebagaiberikut: • Jikasebuahbaristidakterdiriseluruhnyadari 0, makabilangantak 0 pertamadidalambaristersebutadalah 1(dinamakan 1 utama). • Jikaadasuatubaris yang terdiriseluruhnyadari 0, makasemuabarissepertiitudikelompokkanbersama-samadibawahmatriks. • Di dalamsebarangduabaris yang berturutan, yang tidakterdiriseluruhnyadari 0, maka 1 utamadidalambaris yang lebihrendahterdapatlebihjauhkekanandaripada 1 utamadidalambaris yang lebihtinggi. • Setiapkolom yang mengandungsebuah 1 utamamempunyai 0 ditempat lain. NURUL SAILA

  19. Contoh: • Manakahygmerupakanmatrikbentukeselonbaris yang direduksi? • Dengan OBE, ubahlahmatrikberikutmenjadimatrikbentukeselonbarisygdireduksi. NURUL SAILA

  20. Contoh: Tentukanselesaiandarisistempersamaanberikutmenggunakanmetodeeliminasi Gauss-Jordan. NURUL SAILA

  21. TugasMandiri Silahkandilihat blog: http://nsaila2fe.wordpress.com Dikumpulkan via email: nsyaillah@yahoo.com Paling lambat 27 maret 2013 jam 20.00 WIB NURUL SAILA

More Related