1 / 22

Uji Hipotesis Dua Populasi

Uji Hipotesis Dua Populasi. Uji Hipotesis Rata-rata Dua Populasi. Dua Populasi , Sampel Independent. Lower tail test: H 0 : μ 1  μ 2 H A : μ 1 < μ 2 atau , H 0 : μ 1 – μ 2  0 H A : μ 1 – μ 2 < 0. Upper tail test: H 0 : μ 1 ≤ μ 2 H A : μ 1 > μ 2 atau ,

varana
Download Presentation

Uji Hipotesis Dua Populasi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UjiHipotesisDuaPopulasi

  2. UjiHipotesisRata-rata DuaPopulasi DuaPopulasi, Sampel Independent Lower tail test: H0: μ1μ2 HA: μ1 < μ2 atau, H0: μ1 – μ2 0 HA: μ1 – μ2< 0 Upper tail test: H0: μ1≤μ2 HA: μ1>μ2 atau, H0: μ1 – μ2≤ 0 HA: μ1 – μ2> 0 Two-tailed test: H0: μ1 = μ2 HA: μ1≠μ2 atau, H0: μ1 – μ2= 0 HA: μ1 – μ2≠ 0

  3. UjiHipotesisuntukμ1 – μ2 Rata-rata populasi, sampel independent Gunakanstatistikujiz σ1 and σ2diketahui σ1 and σ2tdkdiketahui, n  30 Gunakansuntukmengestimasiσ , perkirakandenganstatistikujiz σ1 and σ2tdkdiketahui, n < 30 Gunakansuntukmengestimasiσ , gunakanstatistikujit

  4. σ1 and σ2Diketahui Rata-rata populasi, sampel independent Statistikujiuntuk μ1 – μ2adalah: * σ1 and σ2diketahui σ1 and σ2tdkdiketahui, n  30 σ1 and σ2tdkdiketahui, n < 30

  5. σ1 and σ2TidakDiketahui, SampelBesar Rata-rata populasi, sampel independent Statistikujiuntuk μ1 – μ2adalah: σ1 and σ2diketahui * σ1 and σ2tdkdiketahui, n  30 σ1 and σ2tdkdiketahui, n < 30

  6. σ1 and σ2TidakDiketahui, Sampel Kecil Asumsi: 12=22 Statistikujiuntukμ1 – μ2adalah: Rata-rata populasi, sampel independent σ1 and σ2diketahui σ1 and σ2tdkdiketahui, n  30 Where t/2has (n1 + n2 – 2) d.f., and * σ1 and σ2tdkdiketahui, n < 30

  7. σ1 and σ2TidakDiketahui, Sampel Kecil Asumsi: 1222 Statistikujiuntukμ1 – μ2adalah: Rata-rata populasi, sampel independent σ1 and σ2diketahui σ1 and σ2tdkdiketahui, n  30 Denganderajatbebas: * σ1 and σ2tdkdiketahui, n < 30

  8. UjiHipotesisuntukμ1 – μ2 DuaPopulasi, Sampel Independent Lower tail test: H0: μ1 – μ2 0 HA: μ1 – μ2< 0 Upper tail test: H0: μ1 – μ2≤ 0 HA: μ1 – μ2> 0 Two-tailed test: H0: μ1 – μ2= 0 HA: μ1 – μ2≠ 0 a a a/2 a/2 -za za -za/2 za/2 TolakH0jikaz < -za TolakH0jikaz > za TolakH0jikaz < -za/2 atauz > za/2

  9. Untukmelihatapakahterdapatperbedaandalampembayarandevidenantarasaham yang tercatatdalam IHSG danIndeks LQ? Andamengambilsampelsecara random sebagaiberikut: IHSGLQJumlahsampel10 12 Rata2 Sampel 3.27 2.53 Std dev Sampel 1.30 1.16 Denganmengasumsikankedua varianssama, apakahterdapat perbedaan rata2 dlmpembayaran deviden( = 0.05)? Contoh

  10. PenghitunganStatistikUji

  11. H0: μ1 - μ2 = 0 i.e. (μ1 = μ2) HA: μ1 - μ2≠ 0 i.e. (μ1 ≠μ2)  = 0.05 df = 10 + 12 - 2 = 20 Critical Values: t = ± 2.086 Test Statistic: Solution Reject H0 Reject H0 .025 .025 t 0 -2.086 2.086 1.5073 Decision: Conclusion: Do not Reject H0 at a = 0.05 There is no evidence of a difference in means.

  12. UjiHipotesisuntuk Data Berpasangan Statistikujiuntukd : Data Berpasangan Derajatbebasuntukt/2= n - 1

  13. UjiHipotesisuntuk Data Berpasangan (continued) Data Berpasangan Lower tail test: H0: μd 0 HA: μd < 0 Upper tail test: H0: μd≤ 0 HA: μd> 0 Two-tailed test: H0: μd = 0 HA: μd≠ 0 a a a/2 a/2 -ta ta -ta/2 ta/2 TolakH0jikat < -ta TolakH0jikat > ta TolakH0jikat < -ta/2 ataut > ta/2 Derajatbebasuntuk t/2 = n - 1

  14. Contoh • Suatuperusahaantelahmengirimkaryawannyanyamelakukanpelatihan “customer service”. Apakahpelatihantsbefektif? Untukitudiambilsampel random sbb:  Banyaknyakomplain: (2) - (1) KaryawanSebelum(1)Setelah(2)Difference,di A64- 2 B206 -14 C32 - 1 D00 0 E40- 4 -21 di d = n = -4.2

  15. Solution • Apakahpelatihanmemberikanpebedaan rata-rata jumlahkomplainkonsumen ( = 0,01)? Tolak Tolak H0:μd = 0 HA:μd 0 /2 /2  = .01 d = - 4.2 - 4.604 4.604 - 1.66 Critical Value = ± 4.604 d.f. = n - 1 = 4 Decision: Do not reject H0 (t stat is not in the reject region) Test Statistic: Conclusion:There is not a significant change in the number of complaints.

  16. UjiHipotesisuntukDuaProporsiPopulasi ProporsiPopulasi Lower tail test: H0: p1p2 HA: p1 < p2 i.e., H0: p1 – p2 0 HA: p1 – p2< 0 Upper tail test: H0: p1≤ p2 HA: p1> p2 i.e., H0: p1 – p2≤ 0 HA: p1 – p2> 0 Two-tailed test: H0: p1 = p2 HA: p1≠ p2 i.e., H0: p1 – p2= 0 HA: p1 – p2≠ 0

  17. DuaProporsiPopulasi Statistikujiuntuk p1 – p2: ProporsiPopulasi

  18. DuaProporsiPopulasi Dimana :

  19. UjiHipotesisuntukDuaProporsiPopulasi ProporsiPopulasi Lower tail test: H0: p1 – p2 0 HA: p1 – p2< 0 Upper tail test: H0: p1 – p2≤ 0 HA: p1 – p2> 0 Two-tailed test: H0: p1 – p2= 0 HA: p1 – p2≠ 0 a a a/2 a/2 -za za -za/2 za/2 TolakH0jikaz < -za TolakH0jikaz > za TolakH0jikaz < -za/2 atauz > za/2

  20. Contoh Apakahadaperbedaan yang signifikanantaraproporsilaki-laki & proporsiperempuan yang akanmenyatakanYauntuksuatupertanyaanA? • Dalamsuaturandom sample, 36 dari72 laki-lakidan31 dari50 perempuanmenyatakanakanmengatakanYa • Ujidengantingkatkesalahan 0.05

  21. Solution H0: p1 – p2= 0 HA: p1 – p2≠0 • Proporsisampel: • Laki-laki: p1= 36/72 = .50 • Perempuan: p2= 31/50 = .62 • Pendugaproporsigabungan

  22. Solution (continued) Reject H0 Reject H0 Nilaistatistikujiuntukp1 – p2: .025 .025 -1.96 1.96 -1.31 Keputusan: TidakmenolakH0 Kesimpulan:Tidakterdapatcukupbuktiuntukmengatakanbahwaterdapatperbedaanproporsilaki-lakidanperempuanuntukmengatakanYapadapertanyaantersebut. Critical Values = ±1.96 For  = .05

More Related