1 / 7

TEOREMA PYTHAGORAS

TEOREMA PYTHAGORAS. Oleh Ayu Anindra Tama Indah Damayanti Florensia Evindonta Bangun Rahmad Abi Nurohman. Luas Persegi. B. Perhatikan persegi ABCD!!. s. A. AB. =. BC. =. CD. =. DA. =. S. Dan kita ketahui luas persegi =. s. s. s. x. s. L. =. C. D. s. Luas Segitiga.

lelia
Download Presentation

TEOREMA PYTHAGORAS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TEOREMA PYTHAGORAS Oleh Ayu Anindra Tama Indah Damayanti Florensia Evindonta Bangun Rahmad Abi Nurohman

  2. Luas Persegi B Perhatikan persegi ABCD!! s A AB = BC = CD = DA = S Dan kita ketahui luas persegi = s s s x s L = C D s

  3. Luas Segitiga Perhatikan persegi panjang PQRS l PQ = RS = l Q P PS = QR = P Luas persegi panjang PQRS = L l = P X Perhatikan diagonal PR yang membagi 2 bagian sama besar persegi panjang PQRS, yaitu P P dan PQR RSP Sehingga didapat luas segitiga= p l L x = 1/2 R l S

  4. Menemukan Teorema Pythagoras ABCD dan Perhatikan PQRS A P B 2 = b AP = BQ = CR = DS a 1 PB = = RD SA = c QC = Q L ABCD - PQRS = 4 a = 4 x ½ x b x c = 2.b.c S 3 b 4 Luas persegi PQRS = a2 C D c R

  5. R K L L L PONS + RLQP = c c2 = (b x c) + (b x c) Q S c b P = 2bc b2 b L L PQMO + KRPS = = (b x b) + (c x c) O N M + c2 = b2 L KLMN = L. PONS + L RLQP + L PQMO + L KRPS

  6. R c K A P L B 2 c2 c a 1 Q S Q b P b b2 a S 3 b 4 C D c O R N M Luaspersegi ABCD = Luaspersegi KLMN 2 bc + a2 = 2 bc + b2 + c2 a2 = b2 + c2

  7. a a a2 Kesimpulan tersebut akan tampak seperti gambar disamping. Kesimpulan tersebut selanjutnya dikenal dengan teorema Pythagoras, yang kemudian dirumuskan sebagai berikut. “Untuk setiap segitiga siku-siku, berlaku kuadrat panjang sisi miring sama dengan jumlah kuadrat panjang sisi siku-sikunya.” a2 = b2 + c2 c2 b bb2

More Related