1 / 13

DIFERENSIAL FUNGSI SEDERHANA ( ORDINARY DIFFERENTIAL)

DIFERENSIAL FUNGSI SEDERHANA ( ORDINARY DIFFERENTIAL). Segaf , SE.MSc. Aljabar Kalkulus. Berisi Difensiasi & Integral  perubahan kecil dalam variabel sebuah fungsi . (small changes of variables at a function)

finna
Download Presentation

DIFERENSIAL FUNGSI SEDERHANA ( ORDINARY DIFFERENTIAL)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DIFERENSIAL FUNGSI SEDERHANA(ORDINARY DIFFERENTIAL) Segaf, SE.MSc.

  2. AljabarKalkulus • BerisiDifensiasi & Integral  perubahankecildalamvariabelsebuahfungsi. (small changes of variables at a function) • Diferensiasi & integral adalahduaoperasimatematisberkebalikan ( two operation in vice versa or in an opposite) • Diferensiasi  penentuantingkatperubahansuatufungsi, • Integral  pembentukanpersamaansuatufungsijikaperubahannyadiketahui. • Sedangkan “Limit”  akardarikalkulus (root of calculus).

  3. PersamaanDiferensialDifferential Equation • PersamaanDiferensialadalahsuatupersamaan yang meliputiturunanfungsidarisatuataulebihvariabelterikatterhadapsatuataulebihvariabelbebas. • (A differential equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives.) • Selanjutnyajikadalampersamaantersebutturunanfungsiituhanyatergantungpadasatuvariabelbebas, makadisebutPersamaanDiferensialBiasa (PDB) danbilatergantungpadalebihdarisatuvariabelbebasdisebutPersamaanDiferensialParsial (PDP).

  4. AturanTurunan (1)Derivative Rules (1)

  5. AturanTurunan (2)Derivative Rules (2)

  6. Contoh Derivative Rules • Fungsikonstan (Constant Function Rule) Jikay = k, dimana k adalahkonstanta, makady/dx = 0 contoh : y = 5  dy/dx = 0 • Fungsipangkat (Power Function Rule) Jikay = xn, dimananadalahkonstanta, makady/dx = nxn-1 contoh : y=x3dy/dx=3x3-1=3x2

  7. 3. Diferensiasiperkaliankonstantadenganfungsi Jikay = kv, dimanav = h(x),  dy/dx = k dv/dx contoh : y = 5x3  dy/dx = 5(3x2) = 15x2 4. Diferensiasipembagiankonstantadenganfungsi jikay = k/v, dimana v=h(x),maka :

  8. 5. Diferensiasipenjumlahan (pengurangan) fungsi jika y = u + v, dimana u = g(x) dan v = h(x) makady/dx = du/dx+dv/dx contoh : y = 4x2 + x3  u = 4x2 du/dx = 8x  v = x3dv/dx = 3x2 dy/dx =du/dx + dv/dx = 8x + 3x2 6. Diferensiasiperkalianfungsi Jika y = uv, dimana u = g(x) dan v = h(x)

  9. 7. Diferensiasipembagianfungsi Jikay = u/v. dimana u = g(x) dan v = h(x)

  10. 8. DiferensiasiFungsikomposit Jika y=f(u) sedangkan u=g(x),dengan bentuk lain y=f{g(x)}, maka :

  11. 9. Diferensiasifungsiberpangkat Jika y=un, dimana u=g(x) dan n adalahkonstanta, makady/dx =nun-1 .(du/dx) Contoh :

  12. exercise

More Related