1 / 13

EQUAZIONI E DISEQUAZIONI CON I VALORI ASSOLUTI

EQUAZIONI E DISEQUAZIONI CON I VALORI ASSOLUTI. Data una qualsiasi espressione algebrica A(x) il suo valore assoluto che si indica con |A(x)| dipende dal segno di A(x): A(x) se A(x)>=0 |A(x)|= - A(x) se A(x) <0 Infatti se consideriamo A(x)= x otteniamo che:

jared
Download Presentation

EQUAZIONI E DISEQUAZIONI CON I VALORI ASSOLUTI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EQUAZIONI E DISEQUAZIONI CON I VALORI ASSOLUTI

  2. Data una qualsiasi espressione algebrica A(x) il suo valore assoluto che si indica con |A(x)| dipende dal segno di A(x): A(x) se A(x)>=0 |A(x)|= - A(x) se A(x) <0 Infatti se consideriamo A(x)= x otteniamo che: x se x>=0 |x| = -x se x<0

  3. cosa succede se dobbiamo risolvere delle equazioni in cui una o più espressioni contenenti l’incognita compaiono in valore assoluto? Per risolvere queste equazioni è necessario studiare prima di tutto il segno di ciascuna espressione in cui compare il valore assoluto i valori che si possono attribuire all’incognita restano divisi in intervalli, in base al valore assoluto, e l’equazione data assume “forma diversa” nei suddetti intervalli!!

  4. Esempio equazione con valore assoluto: studiamo l’espressione con il v.a. |x-1|=4-2x Quando |x-1|>=0 ossia x>=1 il valore assoluto valex-1 quando |x-1|<0 ossia x<1 il valore assoluto vale-x+1 quindi |x-1| assume valori diversi nei due intervalli 1 -x+1 x-1 e di conseguenza anche l’equazione assume “forme diverse” in ciascuno di questi intervalli: Quando x>=1 l’equazione diventa x - 1 = 4 - 2x quando x<1 l’equazione diventa - x + 1 = 4 - 2x

  5. Perciò risolvere l’equazione con il valore assoluto |x-1|=4-2x vuol dire risolvere due sistemi, contenenti le “forme diverse” dell’equazione negli intervalli determinati dal v.a. e la soluzione finale si ottiene unendo le soluzioni dei due sistemi

  6. E se i valori assoluti nell’equazione sono due oppure più di due? Niente paura.. il ragionamento da seguire non cambia!! Si studiano i singoli v.a., si ricavano le “forme diverse” di equazioni e si ricavano i sistemi da risolvere!! Occhio, però, i sistemi da risolvere aumentano! L’unione di tutte le soluzioni dei sistemi determinerà la soluzione finale!

  7. Esempio: Studiamo il primo valore assoluto: |x| >=0 ; x>0 Studiamo il secondo v.a. |x+3|>0 x>-3 Costruiamo il grafico per determinare gli intervalli -3 0 |x| |x+3| Adesso dobbiamo risolvere i tre sistemi la soluzione è: S= S1 U S2 U S3

  8. Disequazioni

  9. cosa succede se dobbiamo risolvere delle disequazioni in cui una o più espressioni contenenti l’incognita compaiono in valore assoluto? Per risolvere queste disequazioni è necessario studiare prima di tutto il segno di ciascuna espressione in cui compare il valore assoluto i valori che si possono attribuire all’incognita restano divisi in intervalli, in base al valore assoluto, e l’equazione data assume “forma diversa” nei suddetti intervalli

  10. Esempio disequazione con valore assoluto: studiamo l’espressione con il v.a. |x-1|>4-2x Quando |x-1|>=0 ossia x>=1 il valore assoluto valex-1 quando |x-1|<0 ossia x<1 il valore assoluto vale-x+1 quindi |x-1| assume valori diversi nei due intervalli 1 -x+1 x-1 e di conseguenza anche l’equazione assume “forme diverse” in ciascuno di questi intervalli: Quando x>=1 l’equazione diventa x - 1 > 4 - 2x quando x<1 l’equazione diventa - x + 1 > 4 - 2x

  11. Perciò risolvere l’equazione con il valore assoluto |x-1|>4-2x vuol dire risolvere due sistemi, contenenti le “forme diverse” dell’equazione negli intervalli determinati dal v.a. e la soluzione finale si ottiene unendo le soluzioni dei due sistemi

  12. e se i valori assoluti nella disequazione sono due oppure più di due? Niente paura.. il ragionamento da seguire non cambia!! Si studiano i singoli v.a., si ricavano le “forme diverse” di equazioni e si ricavano i sistemi da risolvere!! Occhio, però, i sistemi da risolvere aumentano! L’unione di tutte le soluzioni dei sistemi determinerà la soluzione finale!

  13. Esempio: Studiamo il primo valore assoluto: |x| >=0 ; x>0 Studiamo il secondo v.a. |x+3|>0 x>-3 Costruiamo il grafico per determinare gli intervalli -3 0 |x| |x+3| Adesso dobbiamo risolvere i tre sistemi la soluzione è: S= S1 U S2 U S3

More Related