150 likes | 286 Views
havo A Samenvatting Hoofdstuk 11. Regels bij kansrekeningen. aantal gunstige uitkomsten aantal mogelijke uitkomsten. Kansdefinitie van Laplace. P ( G ) =. Somregel Voor elke uitsluitende gebeurtenissen G 1 en G 2 geldt P ( G 1 of G 2 ) = P ( G 1 ) + P ( G 2 ).
E N D
Regels bij kansrekeningen aantal gunstige uitkomsten aantal mogelijke uitkomsten Kansdefinitie van Laplace P(G) = • Somregel Voor elke uitsluitende gebeurtenissen G1 en G2 geldt • P(G1 of G2) = P(G1) + P(G2). • ComplementregelP(gebeurtenis) = 1 – P(complement-gebeurtenis). • Productregel Bij twee onafhankelijke kansexperimenten geldt • P(G1 en G2) = P(G1) · P(G2). Bij een kleine steekproef uit een grote populatie mag je trekken zonder terugleggen opvatten als trekken met terugleggen. 11.1
De complementregel P(gebeurtenis + P(complement-gebeurtenis) = 1 P(gebeurtenis) = 1 – P(complement-gebeurtenis) P(minder dan 8 witte) = P(0 w) + P(1 w) + P(2 w) + P(3 w) + P(4 w) + P(5 w) + P(6 w) + P(7 w) = 1 – P(8 witte) 11.1
Het vaasmodel bij veel kansberekeningen kan het handig zijn het kansexperiment om te zetten in het pakken van knikkers uit een geschikt samengestelde vaas vaasmodel 11.1
Kansbomen • Bij het uitvoeren van 2 of meer kansexperimenten kun je een kansboom gebruiken. • Je gaat als volgt te werk: • Zet de uitkomsten bij de kansboom. • Bereken de kansen van de uitkomsten die je nodig hebt. • Vermenigvuldig daartoe de kansen die je tegenkomt als je de kansboom doorloopt van START naar de betreffende uitkomst. 11.2
opgave 28 In een vaas zitten 50 knikkers, waarvan er p rood zijn. a P(rr) = b P(rode en witte) = 2 · P(rw) = De tweede rode knikker pak je uit een vaas met 50 – 1 = 49 knikkers, waarvan er p – 1 rood zijn. Er zijn 50 – p witte knikkers 11.2
Toevalsvariabelen Bij het kansexperiment uit opgave 31 wordt aselect (= willekeurig) een leerling uit de klas gekozen. X = de leeftijd van de leerling. Omdat de waarde van X afhangt van het toeval heet X een toevalsvariabele. complementregel P(Y ≥ 1) = 1 – P(Y = 0) somregel P(Y < 2) = P(Y = 0) + P(Y = 1) 11.3
Kansverdelingen De kansverdeling van X is een tabel waarin bij elke waarde van X de bijbehorende kans is vermeld. De som van de kansen in een kansverdeling is altijd 1. kanshistogram 11.3
De verwachtingswaarde Werkschema : het berekenen van de verwachtingswaarde E(X) 1 Stel de kansverdeling van X op. 2 Vermenigvuldig elke waarde van X met de bijbehorende kans. 3 Tel de uitkomsten op. 11.3
Succes en mislukking De complement-gebeurtenis van succes. De kans op succes geven we aan met p. 11.4
Binomiaal kansexperiment • Bij een binomiaal kansexperiment is : • n het aantal keer dat het experiment wordt uitgevoerd • X het aantal keer succes • p de kans op succes per keer • De kans op k keer succes is gelijk aan • P(X = k) = · pk · (1 – p)n – k. n k 11.4
Binomiale kansen berekenen Werkschema : het maken van opgaven over binomiale kansexperimenten 1 Omschrijf de betekenis van de toevalsvariabele X. 2 Noteer de gevraagde kans met X en herleid deze kans tot een vorm met binompdf of binomcdf. 3 Bereken de gevraagde kans met de GR. P(X minder dan 4) = P(X < 4) = P(X ≤ 3) P(X tussen 5 en 8) = P(X ≤ 7) – P(X ≤ 5) = P(X = 6) + P(X = 7) 11.5
De binomiale en de normale verdeling combineren opgave 88 a X = het aantal handelingen dat langer dan 3 minuten duurt. X is binomiaal verdeeld met n = 80 en p = normalcdf(180, 1099, 160, 15) ≈ 0,091 … P(X ≥ 10) = 1 – P(X ≤ 9) = 1 – binomcdf(80, 0.091 … , 9) ≈ 0,192 b 2 en een halve minuut is 150 seconden opp = normalcdf(-1099, 150, 160, 15) ≈ 0,2525 De kans dat een handeling korter duurt dan 2½ minuut is 0,2525. 180 · 0,2525 ≈ 45 handelingen minder dan 2½ minuut. c X = het aantal handelingen dat langer dan 2 min. en 45 sec. duurt. Voor welke n is P(X ≥ 5) > 0,99 met p = normalcdf(165, 1099, 160, 15) ≈ 0,369 … ? 150 Casio 1 – P(X ≤ 4) > 0,99 Voor welke n is P(X ≤ 4) < 0,01 Proberen geeft voor n = 27 is P(X ≤ 4) ≈ 0,011 voor n = 28 is P(X ≤ 4) ≈ 0,008. Dus minstens 28 remmen. TI 1 – binomcdf(n, 0.369 … , 4) > 0,99 Voer in y1 = 1 – binomcdf(x, 0.369 … , 4). Maak een tabel en lees af voor n = 27 is y1 ≈ 0,989 voor n = 28 is y1 ≈ 0,992. Dus minstens 28 remmen. 11.5