1 / 17

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS. MATRIKS (PENYELESAIAN SPL DENGAN MATRIKS, OPERASI MATRIKS, DAN SIFAT MATRIKS) PERTEMUAN 2. Pengertian Matriks (1). (1 0 3 -1)  array (susunan objek dalam baris)  vektor (susunan objek dalam kolom)  m atriks (susunan objek dalam baris dan kolom).

rian
Download Presentation

ALJABAR LINIER DAN MATRIKS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ALJABAR LINIER DAN MATRIKS MATRIKS (PENYELESAIAN SPL DENGAN MATRIKS, OPERASI MATRIKS, DAN SIFAT MATRIKS) PERTEMUAN 2

  2. Pengertian Matriks (1) • (1 0 3 -1)  array (susunan objek dalam baris)  vektor (susunan objek dalam kolom)  matriks (susunan objek dalam baris dan kolom)

  3. Pengertian Matriks (2) • Notasi matriks biasanya menggunakan huruf kapital, misal A, M, B dan entri dari matriks dinotasikan dengan huruf kecil. • Ukuran matriks ditentukan oleh banyak baris dan kolom. , matriks A berukuran 3x3 , matriks B berukuran 2x4

  4. Pengertian Matriks (3) • Jika A adalah matriks mxn, maka A dapat disajikan A = [aij], dengan i=1,2,…,m dan j=1,2,…,n atau

  5. Operasi Matriks (1) • Diketahui A=[aij] dan B=[bij], i=1,2,…,m dan j=1,2,…,n • Kesamaan matriks A=B jika ukuran A = ukuran B dan aij = bij, ij • Penjumlahan dan pengurangan matriks AB = C, dengan cij = aij  bij Syarat: ukuran matriks harus sama

  6. Operasi Matriks (2) • Perkalian matriks dengan skalar kA = [kaij], dengan k suatu konstanta • Perkalian matriks dengan matriks Amxn, Bnxp, maka AxB = Cmxp = [cij] dengan cij = Syarat: ukuran kolom matriks A sama dengan ukuran baris matriks B, sehingga hasil perkaliannya berukuran: ukuran baris A x ukuran kolom B

  7. Soal • Hitunglah

  8. Sifat Operasi Matriks (1) • Jika A, B, C matriks dengan ukuran sedemikian sehingga operasi matriks dapat dikerjakan dan k, l adalah skalar, maka berlaku: • AB = BA • (AB)C = A(BC) • (AB)C = A(BC)

  9. Sifat Operasi Matriks (2) • (AB)C = AC  BC • C(AB) = CA  CB • k(AB) = (kA)B = A(kB) • (kl)A = kA  lA • k(AB) = kA  kB • k(lB) = (kl)B

  10. Matriks untuk SPL (1) • Bentuk umum SPL a11 x1 + a12x2 + … + a1n xn = b1 a21 x1 + a22x2 + … + a2n xn = b2 ………………… am1 x1 + am2x2 + … + amn xn = bm dapat diubah ke matriks

  11. Matriks untuk SPL (2) • Matriks yang diperbesar dari bentuk matriks tadi adalah

  12. Operasi Baris Elementer (OBE) • Mengalikan suatu baris dengan suatu konstanta, k0 • Menukarkan 2 buah baris • Menambahkan kelipatan suatu baris dengan baris yang lain

  13. Eliminasi Gauss (1) • Suatu matriks dikatakan dalam bentuk eselon baris tereduksi jika memenuhi sifat berikut: • Jika suatu baris yang entrinya tidak seluruhnya nol, maka entri tak nol pertamanya 1 dan disebut 1 utama • Jika ada suatu baris yang seluruhnya nol, maka baris tersebut diletakkan pada baris paling bawah

  14. Eliminasi Gauss (2) • Dalam 2 baris yang berurutan, 1 utama pada baris yang bawah terletak lebih ke kanan dari 1 utama pada baris atasnya • Kolom yang memuat 1 utama mempunyai entri tak nol di tempat lain

  15. Eliminasi Gauss dan Eliminasi Gauss Jordan • Eliminasi Gauss didasarkan pada matriks bentuk eselon baris (dengan OBE) dan eliminasi Gauss Jordan didasarkan pada matriks bentuk eselon baris tereduksi

  16. Bentuk Eselon Baris Tereduksi (1) • Letakkan kolom pertama yang tidak seluruhnya nol • Tukarkan baris pertama dengan baris yang lain, jika diperlukan, untuk memperoleh entri tak nol pada kolom pertama baris pertama • Jika entri baris pertama kolom paling kiri (pertama) a, maka kalikan 1/a pada baris pertama untuk memperoleh 1 utama pada baris pertama

  17. Bentuk Eselon Baris Tereduksi (2) • Tambahkan kelipatan yang sesuai dari baris pertama terhadap baris lainnya untuk memperoleh entri nol di bawah 1 utama • Lakukan langkah 1-4 pada baris-baris berikutnya • Kolom yang memuat 1 utama variabelnya berperan sebagai variabel utama dan kolom yang tidak memuat 1 utama sebagai variabel bebas

More Related