1 / 9

Formula Koefisien Korelasi

Formula Koefisien Korelasi. Koefisien Korelasi:. atau:. dimana: r = koefisien korelasi n = ukuran sampel x = nilai var bebas y = nilai var terikat. Contoh Kasus. Contoh Perhitungan. Tinggi y. r = 0.886 → hubungan linier positif relatif kuat antara var x dan y. Diameter, x.

Download Presentation

Formula Koefisien Korelasi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Formula Koefisien Korelasi Koefisien Korelasi: atau: dimana: r = koefisien korelasi n = ukuran sampel x = nilai var bebas y = nilai var terikat

  2. Contoh Kasus

  3. Contoh Perhitungan Tinggi y r = 0.886 → hubungan linier positif relatif kuat antara var x dan y Diameter, x

  4. Uji Signifikansi untuk Korelasi • Hipotesis H0: ρ = 0 (tak ada korelasi) HA: ρ≠ 0 (ada korelasi) • Uji Statistik • (dgn n – 2 der. kebebasan)

  5. Lanjutan Apakah hub. Linier antara diameter dan tinggi tabung cukup signifikan pada taraf. signifikansi 0,05? H0: ρ= 0 (tak berkorelasi) H1: ρ≠ 0 (ada korelasi) =.05 , df=8 - 2 = 6

  6. Solusi Keputusan:Tolak H0 Kesimpulan:Ada hubungan linier pada taraf signifikansi 5% d.f. = 8-2 = 6 a/2=.025 a/2=.025 Reject H0 Do not reject H0 Reject H0 -tα/2 tα/2 0 -2.4469 2.4469 4.68

  7. RLS Populasi y Observed Value of y for xi εi Slope = β1 Predicted Value of y for xi Random Error for this x value Intercept = β0 x xi

  8. Penaksiran Model RLS (sampel) Estimated (or predicted) y value Estimate of the regression intercept Estimate of the regression slope Independent variable The individual random error terms ei have a mean of zero

  9. Persamaan RLS • Rumus Mencari b1 dan b0 : atau: dan

More Related