1 / 30

Kalkulus

Kalkulus. Aturan-aturan Diferensial. leibniz's notation. d y. f '( x ). D x f ( x ). d x. theorem A. D x ( k ). = 0. theorem B. D x ( x ). = 1. theorem C. D x ( x n ). = n x n- 1. theorem C. D x ( x - n ). = - n x - n- 1. theorem D. D x [ k . f ( x )]. = k . D x [ f ( x )].

dandre
Download Presentation

Kalkulus

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kalkulus Aturan-aturan Diferensial Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  2. leibniz'snotation dy f'(x) Dxf(x) dx Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  3. theoremA Dx(k) = 0 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  4. theoremB Dx(x) = 1 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  5. theoremC Dx(xn) = nxn-1 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  6. theoremC Dx(x-n) = -nx-n-1 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  7. theoremD Dx[k.f(x)] = k.Dx[f(x)] Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  8. theoremE Dx[f(x) + g(x)] = Dxf(x) + Dxg(x) Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  9. theoremF Dx[f(x) - g(x)] = Dxf(x) - Dxg(x) Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  10. theoremG Dx[f(x)g(x)] = Dxf(x) . Dxg(x) Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  11. theoremG Dx[f(x)g(x)] = f(x)Dxg(x)+g(x)Dxf(x) Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  12. f(x) = (x2 + 2)(x3 + 1) ? f'(x) = Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  13. theoremH Dx[f(x) / g(x)] g(x)Dxf(x) – f(x)Dxg(x) g2(x) = Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  14. 3 1 – f(x) = x3 x4 ? f'(x) = Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  15. Kalkulus Diferensial Trigonometri Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  16. Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  17. sin x < x < tan x Untuk tiap 0 < x < π/2 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  18. tan x < x < sin x Untuk tiap -π/2 < x < 0 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  19. sin x < x < tan x sin x sin x sin x Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  20. 1 < x < 1 sin x cos x Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  21. lim = 1 1 x0 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  22. 1 lim = 1 cos x x0 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  23. x lim = 1 sin x x0 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  24. sin x lim = 1 x x0 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  25. 1-cos x lim = 0 x x0 Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  26. theoremA Dx(sin x) = cos x Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  27. theoremB Dx(cos x) = -sin x Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  28. nexttheorem Dx(tan x) = sec2x Dx(sec x) = secx tanx = -cosec2x Dx(cotan x) Dx(cosec x) = -cosec x cotan x Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  29. GottfriedLeibniz “ Finally there are simple ideas of which no definition can be given; there are also axioms or postulates, or in a word primary principles, which cannot be proved and have no need of proof ” Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

  30. GottfriedLeibniz Monad Wibisono Sukmo Wardhono, ST, MT http://wibiwardhono.lecture.ub.ac.id

More Related