1 / 11

SISTEM KOORDINAT HORISONTAL

SISTEM KOORDINAT HORISONTAL. 1. Sistem Koordinat Lokal 2. Sistem Koordinat Umum. SISTEM KOORDINAT LOKAL. A. KARTESIAN (XY). A. X AB. Y // U. Y. U kompas. . B. . X B. X C. . Y B. C (X C ,Y C ). . . . C. X C. Y C. A (0,0). Y C. . . X. X. A (0,0).

Download Presentation

SISTEM KOORDINAT HORISONTAL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SISTEM KOORDINAT HORISONTAL • 1. Sistem Koordinat Lokal • 2. Sistem Koordinat Umum

  2. SISTEM KOORDINAT LOKAL A. KARTESIAN (XY) A XAB Y // U Y U kompas  B  XB XC  YB C (XC,YC)    C XC YC A (0,0) YC   X X A (0,0)

  3. METODE PENENTUAN POSISI HORISONTAL • Menentukan koordinat titik baru dari satu atau beberapa titik yg telah diketahui koordinatnya • Dikelompokkan dalam : 1. Metode penentuan titik tunggal (satu titik) 2. Metode penentuan banyak titik

  4. Metode PenentuanSatu Titik • Metode Polar • Metode Perpotongan ke muka • Metode Perpotongan ke belakang

  5. Metode Penentuan Banyak Titik • Metode Polygoon • Metode Triangulasi • Metode Trilaterasi

  6. METODE POLAR Data : Koordinat A : (XA,YA) --- diketahui Jarak mendatar (dAB) Sudut jurusan AB : AB Dicari : Koordinat B (XB,YB) = ? Dihitung dgn rumus : XB = XA + XAB YB = YA + YAB Y B  YB dAB YAB Dimana XAB = dAB Sin AB YAB = dAB Cos AB AB  XB XAB Sehingga : XB = XA + dAB Sin AB YB = YA + dAB Cos AB A  X O XA XB

  7. METODE PERPOTONGAN KE MUKA Data : Koordinat A(XA,YA) dan B(XB,YB) –- minimal 2 ttk diketahui Sudut di A = (1) dan B = 2) – diukur dgn alat Dicari : Koordinat C (XC,YC) = ? Dihitung dgn rumus SINUS :  = 1800 – (1+ 2) dAB= (XB – XA)2 + (YB – YA)2]½ dAC = dAB/Sin  x Sin 2 dBC = dAB/Sin  x Sin 1 Y YB XBC XAB C   dAC YAC AC BC t  (XB – XA) AB = arc tan (YB – YA) XB 1 A dBC 2  YAB dAB  T  AC = AB - 1 BC = AB + 2– 1800 B X O XA XB Dr ttk B Dr ttk A Sehingga : XC = XA + dAC Sin AC = XB + dBC Sin BC YC = YA + dAC Cos AC = YB + dBC Cos BC

  8. METODE PERPOTONGAN KE MUKA Data : Koordinat A(XA,YA) dan B(XB,YB) –- minimal 2 ttk diketahui Sudut di A = (1) dan B = 2) – diukur dgn alat Dicari : Koordinat C (XC,YC) = ? Dihitung dgn rumus TANGENS : AC = AB - 1 BC = AB + 2– 1800 XAB Tan BC = YAC Tan BC = … (1) YAB +YAC XBC + XAB Tan AC = YAC Tan AC = … (2) YAC Y YB XBC XAB C   dAC YAC AC BC t  XB 1 A dBC 2  YAB dAB  T (2) – (1) XAB + YAB Tan BC YAC = Tan AC - Tan BC  B O X XA XB XAC Tan AC= YAC XC = XA + XAC = YACTan AC YC = YA + YAC

  9. METODE PERPOTONGAN KE MUKA Data : Koordinat A(XA,YA) dan B(XB,YB) –- minimal 2 ttk diketahui Sudut di A = (1) dan B = 2) – diukur dgn alat Dicari : Koordinat C (XC,YC) = ? Dihitung dgn pertolongan Garis TINGGI AC = AB - 1 BC = AB + 2– 1800 XAB Tan BC = YAC Tan BC = … (1) YAB +YAC XBC + XAB Tan AC = YAC Tan AC = … (2) YAC Y YB XBC XAB C   dAC YAC AC BC t  XB 1 A dBC 2  YAB dAB  T (2) – (1) XAB + YAB Tan BC YAC = Tan AC - Tan BC  B O X XA XB XAC Tan AC= YAC XC = XA + XAC = YACTan AC YC = YA + YAC

  10. 1. Diket titik A(10,10) m Sdt jur AB = 900 Jarak mendatar AB = 100 m Koordinat B (XB, YB) = ?? 2. Diket titik A(10N,10N) m Sdt jur AB = 900 Jarak mendatar AB = 100 m Koordinat B (XB, YB) = ??

  11. 3. Diket titik A(10,10) m ; B(10,70) Sdt BAC = Sdt ABC = 600 Koordinat C (XC, YC) = ?? 4. Diket titik A(-10,-10) m ; B(-10,-70) Sdt BAC = Sdt ABC = 600 Koordinat C (XC, YC) = ??

More Related