1 / 8

Determinan sebagai Penyelesaian Persamaan

Determinan sebagai Penyelesaian Persamaan. 1. SILABI. Cara determinan Penyelesaian persamaan linier dengan metode determinan Penyelesaian persamaan linier berganda dengan metode determinan. 2. Cara Determinan.

idola-moses
Download Presentation

Determinan sebagai Penyelesaian Persamaan

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Determinan sebagai Penyelesaian Persamaan 1

  2. SILABI Cara determinan Penyelesaian persamaan linier dengan metode determinan Penyelesaian persamaan linier berganda dengan metode determinan 2

  3. Cara Determinan Cara determinan bisa digunakan untuk menyelesaikan persamaan yang jumlahnya banyak. Determinan secara umum dilambangkan dengan notasi Rumus determinan : ae - db 3

  4. Penyelesaian persamaan dengan Metode determinan Bila ada 2 persamaan : a1x + b1y = c1 a2x + b2y = c2 Maka penyelesaian untuk memperoleh nilai x dan y dapat dilakukan dengan : x = Dx y = Dy D D D = a1 b1 = a1b2 – a2.b1 a2 b2 Dx = c1 b1 = c1b2 – c2b1 c2 b2 Dy = a1 c1 = a1c1 - a2c2 a2 c2 4

  5. Contoh a b c x + y = 2 1 1 x 2 2x - y = -5 2 -1 y = -5 D = 1 1 = 1(-1) - 1(2) = -3 2 -1 Dx = 2 1 = 2 (-1) – (-5)1 = -2 + 5 = 3 -5 -1 Dy = 1 2 = -5 (1) – (4) = -9 2 -5 x = Dx = 3 = - 1 y = Dy = -9 = 3 D -3 D -3

  6. - - - + + + Penyelesaian persamaan linear berganda dengan determinan a1 b1 c1 a1 b1 D = a2 b2 c2 a2 b2 a3 b3 c3 a3 b3 (a1b2c3 +b1c2a3 + c1a2b3) – ( a3b2c1 + b3c2a1 + c3a2b1) d1 b1 c1 Dx Dx = d2 b2 c2 x= d3 b3 c3 D a1 d1 c1 Dy Dy = a2 d2 c2 y = a3 d3 c3 D Dz = a1 b1 d1 Dz a2 b2 d2 z = a3 b3 d3 D

  7. a b c d 1 -2 1 x -1 2 -3 4 y = -5 3 -1 2 z 1 x – 2y + z = -1 2x - 3y + 4z = -5 3x – 4y + 2z = 1 D = 1 -2 1 2 -3 4 3 -4 2 = (1)(-3)(2) + (-2)(4)(3) + (1)(2)(-4) - (3)(-3)(1) - (-4)(4)(1) - (2)(2)(-2) = (-6) + (-24) + (-8) - (-9) - (-16) - (-8) = -38 + 33 = -5

  8. Dx = -1 -2 1 -5 -3 4 = 6 + (-8) + 20 – (-3) - 16 -20 1 -4 2 = 18 - 33 = -15 x = Dx = -15 = 3 D -5 Dy = 1 -1 1 2 -5 4 = (-10) + (-12) + 2 – (-15) - 4 - (-4) 3 1 2 = -20 + 15 = -5 Y = Dy = -5 = 1 D -5 Dz = 1 -2 -1 2 -3 -5 = (-3) + 30 + 8 - 9 - 20 - (-4) 3 -4 1 = 35 - 25 = 10 z = 10 = -2 -5 HP = (3,1,-2)

More Related