1 / 30

Primer examen: martes 5 de marzo

Primer examen: martes 5 de marzo. Procesamiento de imágenes digitales para generar mapas temáticos. Páginas 201-210 del Manual de Idrisi. Patrones de respuesta espectral. Respuestas espectrales de datos de AISA (128 bandas): Guánica. arena. manglar. mar.

sarila
Download Presentation

Primer examen: martes 5 de marzo

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Primer examen: martes 5 de marzo

  2. Procesamiento de imágenes digitales para generar mapas temáticos Páginas 201-210 del Manual de Idrisi

  3. Patrones de respuesta espectral

  4. Respuestas espectrales de datos de AISA (128 bandas): Guánica arena manglar mar

  5. Respuestas espectrales de datos de AISA (128 bandas): Guánica arena manglar mar

  6. Patrones de respuesta espectral

  7. ¿Patrones de respuesta espectral o signaturas espectrales? • Algunos objetos (o especies) tienen un patrón de respuesta espectral bien particular (signatura o firma espectral). • Muchos objetos tienen patrones que solapan con los de otros objetos similares. • Algunos objetos presentan más de un patrón o variaciones de respuesta espectral. • Por lo tanto, el término “patrón de respuesta espectral” es considerado más apropiado que “signatura o firma espectral” para denominar la manera particular como un objeto refleja la energía.

  8. Pasos para la clasificación digital • Definir el problema • Seleccionar el tipo de dato telesensado • Procesar los datos • Evaluar los resultados • Distribuir los resultados

  9. Clasificación espectral • Los 2 tipos clásicos de procesamiento para clasificar espectralmente son: clasificación supervisada y clasificación no-supervisada. • Ambos tipos intentan detectar patrones de respuesta espectral que correspondan con tipos de objetos (o especies).

  10. Clasificación supervisada • Define los patrones de respuesta espectral de los objetos a clasificar, extrayendo estadísticas de grupos de píxeles considerados representativos de las clases a detectar. • Se le llama supervisada porque: • dirigimos el procedimiento entrenando la clasificación • utilizando lo que conocemos sobre las clases.

  11. Procedimiento • Delimitar los lugares de entrenamiento. • Extraer la información espectral sobre lugares de entrenamiento. 3. Cotejar y evaluar la información de los lugares de entrenamiento. 4. Extraer información temática (clasificar). 5. Evaluar la clasificación.

  12. Lugares de entrenamiento • Debe incluir áreas relativamente pequeñas. • La suma de píxeles por clase debe ser no menor de 10 píxeles por cada banda espectral utilizada. • Estos lugares deben estar regados por el área de estudio de tal manera que se incluya la mayor variabilidad posible de cada clase.

  13. Selección de lugares de entrenamiento

  14. Evaluación gráfica de lugares de entrenamiento ¿Qué provoca que las barras verdes sean mas altas que las azules? ¿Qué sugiere el que las barras en el infrarrojo no solapen? ¿Qué sugiere el que las barras del espectro visible solapen?

  15. Evaluación gráfica de lugares de entrenamiento Reflectancia en la banda 4 Reflectancia en la banda 3

  16. Extracción de información temática Algoritmos clasificadores

  17. Distribución multidimensional de valores de reflectancia

  18. Clasificador paralelepípedo

  19. Distancia mínima a los promedios (por distancias crudas)

  20. Distancia mínima a los promedios (por distancias normalizadas)

  21. Clasificador por máxima probabilidad

  22. Mapping the forest types and landcover of Puerto Rico. Lo discutiremos pronto. Lo consiguen en el portal del curso.

  23. Patrones de respuesta espectral

  24. Clasificador paralelepípedo X X X

  25. Clasificador por distancia mínima a los promedios X

  26. Máxima probabilidad

More Related