1 / 50

STATISZTIKA II. 12. Előadás

STATISZTIKA II. 12. Előadás. Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék. Exponenciális trend számítása. A társadalmi-gazdasági jelenségek esetén gyakoriak a lineáristól eltérő alaptendenciát tartalmazó idősorok. Ezek leggyakrabban lehetnek: exponenciális,

zarola
Download Presentation

STATISZTIKA II. 12. Előadás

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. STATISZTIKA II.12. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék

  2. Exponenciális trend számítása A társadalmi-gazdasági jelenségek esetén gyakoriak a lineáristól eltérő alaptendenciát tartalmazó idősorok. Ezek leggyakrabban lehetnek: exponenciális, logisztikus, polinomiális típusúak. Kiemelkedő jelentőségű az exponenciális trend, mivel az azonos ütemben történő növekedés (csökkenés) gyakori a társadalmi-gazdasági idősorok esetén. Pl. A gazdasági növekedés makromutatóinak egy része, a demográfiában a népesség nagyságának alakulása, inflációs időkben a folyóáras mutatók (behatárolt időintervallumban).

  3. Exponenciális trend számítása Alapmodellünk a következő: Ahol a véletlen tényező 1 körül ingadozik. Az exponenciális trend paramétereit is a legkisebb négyzetek módszerével becsüljük. Számítógép nélküli számításoknál egyszerű transzformációt alkalmaztak. Mindkét oldal logaritmusát véve kapható, ahonnan az helyettesítéseket elvégezve a egyenlet adódik, amely lényegében megegyezik a lineáris trendegyenlettel.

  4. Exponenciális trend számítása Ezért a paraméterek becslései ugyanúgy számíthatók, mint lineáris esetben. ismeretében a logaritmus-transzformációt visszafelé alkalmazva kaphatók meg értékei: A számítógépes programcsomagok az eredeti adatok legkisebb négyzetes becslését is könnyen megadják. De a két becslés egymástól eltérő eredményt ad, és bár az eredeti (nem transzformált) alakra végzett becslés a pontosabb, mégis kényelmi okokból gyakran használjuk a linearizált alakon alapuló becslést, ami nem okoz számottevő torzítást.

  5. Illesszünk exponenciális trendet a magyarországi pamutszövet-termelés idősorára linearizálással (Excelben) és nemlineáris legkisebb négyzetek becslésével (SPSS-ben)!

  6. Exponenciális trend számítása A két különböző becsléssel az alábbi, egymástól eltérő eredményeket kaptuk: Linearizált becslés: Nemlineáris becslés: A függvények paraméterei eltérnek egymástól, de az illesztett trendértékek közel állnak egymáshoz. A fontosabb paraméterek kétféle becslése egymáshoz közeli érték.

  7. Exponenciális trend számítása A paraméter a t=0 időpontban/időszakban adja meg eredeti mértékegységben a trendfüggvény értékét, míg a a trend szerinti növekedési ütemet adja meg eredeti mértékegységtől függetlenül, többnyire %-os formában. Ezt az állítást igazolja, ha a becsült trendegyenletben t helyére t+1-et írva két egymást követő trendérték hányadosát képezzük: A paraméter tehát tartalmilag hasonló az mutatóhoz, de számításához a teljes idősort felhasználjuk, ezért jobban mutatja az átlagos tendenciát és kevésbé érzékeny az idősor elején és végén álló értékekre.

  8. A magyarországi pamutszövet-termelés idősora és exponenciális trendje Millió m2 évek sorszáma

  9. A paraméter értékének és az exponenciális trend alakjának összefüggése növekvő – csökkenő ütemű trend esetén használjuk A paraméter értéke adja meg az exponenciális trendfüggvény alakját:

  10. Alkalmazottak havi bruttó keresetének alakulása Magyarországon 1980 és 2005 között Jellemezzük az idősort exponenciális trenddel, becsüljük, értelmezzük a paramétereit, és készítsünk előrejelzést 2001-re és 2006-ra!

  11. Alkalmazottak havi bruttó keresetének alakulása Magyarországon 1980 és 2005 között ezer Ft évek sorszáma

  12. Exponenciális trend számítása A becslések elvégzéséhez az adatokat logaritmáljuk, a t változót 1980-ban 1-gyel indítjuk. A számításokat a linearizált forma alapján számítógépen több módon is elvégeztük : • normál egyenletek, • adatelemzés/regresszió, • trendvonal beszúrása (eredeti adatokra).

  13. Exponenciális trend becslése a normálegyenletek megoldásával

  14. Az alkalmazottak havi bruttó keresetének exponenciális trendje

  15. Exponenciális trend számítása A kerekített eredmények: Így a becsült trendegyenlet: A 2,52 paraméter azt jelenti, hogy t=0-nál, azaz 1979-ben az átlagkereset trend szerinti értéke 2,52 ezer Ft lett volna, míg a jelentése az, hogy a trend szerint a nominális átlagkeresetek évi átlagában több mint 1,18-szorosukra, azaz 18 %-kal nőttek a vizsgált időszakban.

  16. Exponenciális trend számítása A trend bármely becsült értékét megkaphatjuk, ha a becsült trendegyenletbe a megfelelő t értékeket behelyettesítjük. Így pl. 2001-ben t=22 és a becsült trendérték: Ez esetben a véletlen hatást vagy a vagy az e2001=103,6 – 97,02 =6,58 ezer Ft maradékkal jellemezhetjük. Az illeszkedés pontosságát az mutatóval jellemezzük, melynek négyzetgyöke (7,36 ezer Ft) azt mutatja, hogy a vizsgált időszakban a trendérték körül mekkora volt a véletlen eltérések átlaga. Reziduális variancia

  17. Exponenciális trend számítása Előrejelzés esetén szintén a becsült trendegyenletbe kell helyettesíteni a megfelelő t értéket. Mivel 2006-ra t=27, így az előrejelzés Azt, hogy ez a tendencia, amire az előrejelzésünket építjük, folytatódhat-e a további években, alapos szakmai elemzésnek kell alávetni!!!!!!!

  18. Egyéb nemlineáris trendek A lineáris és exponenciális függvény mellett más típusú függvények is használhatók trendfüggvényként. A gyakorlatban kiemelkedő jelentősége van azoknak a függvényeknek, amelyek telítődési folyamatokat írnak le. A valóságban az exponenciális növekedés gyakran korlátokba ütközik, lelassul, és elveszti exponenciális jellegét. A rövid távon exponenciális jelleget mutató folyamatok ezért hosszabb távon gyakran ún. S görbe alakú korlátos növekedési folyamattá válnak. Valamely folyamat kezdetben (amikor még messze van természetes korlátjától) gyorsuló módon, exponenciális függvény szerint nő, majd ahogy közelít a korláthoz (telítettségi szinthez), úgy lassul le a növekedés.

  19. Egyéb nemlineáris trendek Ilyen tendenciát követ sok szaporodási folyamat, bizonyos fertőző betegségeken átesettek száma egy járványban (H1N1), a háztartások tulajdonában lévő tartós fogyasztási cikkek állománya, bizonyos divatok elterjedése stb. A közgazdaságtanban egy sor folyamat esetében bizonyos szint felett a csökkenő hozadék jelentkezik. Ebben az esetben a legelterjedtebb a logisztikus függvény alkalmazása, de használják még az ún. Gompertz- valamint a Johnston-görbéket is.(Ezek összetett exponenciális függvények, több paraméterrel, amelyek becslése elég nehéz feladat.)

  20. Egyéb nemlineáris trendek A logisztikus függvény egyenlete a következő: ahol k az ún. telítődési paraméter, a egy helyzetparaméter, b pedig alakparaméter. A három paraméter megfelelő rugalmasságot biztosít a függvénynek, hiszen igen sok különböző alakú folyamat leírására alkalmasak. Egyedül a k-nak van jól megragadható tárgyi értelme: ez azt a felső korlátot jelenti, amelyhez aszimptotikusan tart a függvény. A másik két paraméter közvetlenül nehezen értelmezhető: az a paraméter a vízszintes tengelyen való eltolást vezérli, b pedig azt mutatja meg, hogy mennyire meredek a görbe. Maga a függvény lassú növekedés után egyre gyorsuló ütemben nő, majd elérve az inflexiós pontot konkáv szakaszba megy át, és monoton növekvően ugyan, de egyre lassuló ütemben tart a felső korláthoz.

  21. Példa logisztikus trendre A mobiltelefon elterjedése napjainkban: lassú kezdés után az állomány egyre gyorsuló ütemben kezdett felfutni, majd az utóbbi években, amikor a telítettség jelei mutatkoztak, az előfizetések száma egyre csökkenő ütemben nőtt. Ez a jelenség logisztikus függvénnyel jól leírható, de a függvény paramétereinek becslése nem egyszerű. Az eljárásnál a felsőkorlátot kívülről adtuk meg (10 000 ezer fő, ami nagyjából a lakosság száma), majd transzformációkkal lineáris trendszámításra vezettük vissza a feladatot a következő módon (a maradéktagot elhagyva): Ha ismerjük a k-t, a bal oldal az adatokból kiszámítható, és már csak egy lineáris trend ln a és b paramétereit kell meghatározni

  22. Mobiltelefonok előfizetőinek száma Magyarországon 1990-2005 években Ezer fő Évek sorszáma

  23. Mobiltelefonok előfizetőinek száma A CD. 5_07 feladata

  24. Logisztikus trend számítása

  25. Polinomiális trend számítása Polinomiális trend: Nem kapcsolható semmilyen társadalmi-gazdasági folyamathoz, de sok nemlineáris folyamat időbeli lefutásának közelítő leírására alkalmas. A t időváltozó p-ed fokú polinomja: és a maradékváltozó továbbra is 0 körül ingadozik. Az ismeretlen paraméterek becslésére most is a legkisebb négyzetek módszerét használjuk, de ez most egy p+1 egyenletből álló lineáris egyenletrendszer megoldását igényli, ami számítógéppel könnyen elvégezhető.

  26. Polinomiális trend számítása A függvény paraméterei közvetlenül nem értelmezhetők. Az előrejelzés erősen függ a p megválasztásától – önkényes elem jelentősége!!!! A polinomok tulajdonsága, hogy p+1 pont (megfigyelés) egyértelműen meghatároz egy p-edfokú polinomot, ha p-t elég nagyra választjuk, akkor a véletlent reprezentáló etváltozót akár teljesen el is tüntethetjük. A p növelésével monoton csökkenthető a reziduális variancia – alkalmazás veszélye!!!!

  27. Polinomiális trend számítása A polinomiális trend alkalmazásának szabályai: • Fokozott figyelemmel elemezzük a megfigyeléseken kívüli információkat, szakmai ismereteket, amelyek alapján a függvény alakját, főbb jellemzőit előre valószínűsíthetjük (pl. lehetnek-e fordulópontok a folyamatban, indokolt-e az egymást követő növekvő, ill. csökkenő szakaszokat tartós tendenciának tekinteni). • Ne használjunk túl magas fokszámú polinomot!!! (p=2 vagy p=3) • Az előrejelzéseknél vizsgáljuk, hogy reális lehet-e azok iránya, nagysága. • Ne hasonlítsunk össze különböző fokszámhoz tartozó reziduális varianciákat, mert az félrevezető!!!!

  28. Polinomiális trend számítása Az eltérő fokszámú polinomok illeszkedését a szabadságfokkal korrigált reziduális varianciával hasonlíthatjuk össze: Ahol ez a mutató a legkisebb értéket adja, ott (olyan p fokszám mellett) az illeszkedés a legjobbnak tekinthető. De vegyük figyelembe a polinomok alkalmazásának szabályait!!!!!

  29. A trendfüggvények illesztésénél mindig figyelembe kell venni: A trendfüggvény önmagában semmit sem magyaráz. A magyarázatot a trendfüggvényen kívül, a szakmai ismeretekben kell keresni, így a trendfüggvény megválasztásában is elsősorban a szakmai ismeretekre kell támaszkodni.

  30. Egyszerű mozgó átlagok Az analitikus trendszámítás mellett a leggyakrabban alkalmazott simító és szűrő eljárás a mozgó átlagolás. Lényege, hogy az idősor elemeinek környezetében lévő elemek átlagával közelítjük a megfelelő elemeket. A legegyszerűbb esetben, ha csak a t-edik elemet megelőző és követő értékeket vesszük figyelembe, akkor a mozgóátlagolású trend az formulából adódik. Ez esetben 3 tagból számítunk átlagot minden lehetséges t-re (t=2,3,…,n-1), így 3 tagú mozgó átlagról beszélünk.

  31. Egyszerű mozgó átlagok A mozgó átlagokból mindig kevesebb van, mint a megfigyelt adatokból, mivel az idősor elejére és végére nem lehet a számításokat elvégezni. Háromtagú mozgó átlagok számítása:

  32. Egyszerű mozgó átlagok Általában nem 3, hanem m tagból számítanak mozgó átlagot. Ha m páratlan, akkor felírható m=2k+1 alakban, és ekkor a mozgó átlagolású trend számításának általános képlete: ahol kell hogy fennálljon. A megfigyelt értékek egyszerű számtani átlagát számítjuk ki. (A példában m=3 és k=1 volt.) Az idősor elején és végén lévő egyaránt k számú időszakra nem tudunk mozgó átlagot készíteni. Így a rövidülés mértéke 2k=m–1.

  33. Egyszerű mozgó átlagok Ha m páros, akkor m=2k, és ekkor egyszerű számtani átlag segítségével nem tudjuk azt biztosítani, hogy yt-k előtt és után azonos számú tag szerepeljen az átlagolásban. Speciális súlyozott számtani átlagot használunk mozgó átlagolásra. Az alkalmazandó formula: Ebben az esetben fenn kell állnia a egyenlőtlenségeknek, így a „rövidülés” ez esetben 2k=m. A mozgóátlagolású trendet az első és az utolsó k elemre nem tudjuk kiszámítani.

  34. Egyszerű mozgó átlagok Ez a két formula a lehető legegyszerűbb mozgó átlagolású trendet határozza meg. A mozgó átlagolás lényege a kisimításban van: az átlagszámítással csökkentjük a véletlen tag szerepét, ugyanakkor a t mozgatásával biztosítjuk az alaptendencia megmaradását. m növelésével egyre csökken a véletlen szerepe, ugyanakkor egyre rövidebb lesz a trend, így a tendencia felismerése is egyre nehezebb lesz.

  35. A kukorica termésmennyisége - mozgó átlagolás

  36. A kukorica termésmennyisége - mozgó átlagolás ezer tonna 1994 mélypont évek sorszáma

  37. További simító eljárások és szűrők A szimmetrikus mozgó átlag az egyes megfigyelésekhez azonos súlyokat rendel és középre van igazítva. Súlyok azonosak legyenek-e??? középső súly nagyobb - kiemeli a mindenkori értéket a középső súly kicsi - a simítás erősebb Nem szimmetrikus mozgó átlagok: csak a folyó és a késleltetett értékeket használják fel (jövőbeli értéket nem). Szimmetrikus súlyrendszert nem lehet használni, de a jelenhez közelálló értékeket nagyobb, a távoli múlt megfigyeléseit kisebb súllyal használják fel a simítás során.

  38. További simító eljárások és szűrők Nem szimmetrikus mozgó átlagok folytatás A legegyszerűbb súlyrendszer a lineárisan csökkenő, azaz a folyóérték kapja a legnagyobb súlyt, az egy időszakkal késleltetett kisebbet, a két időszakkal későbbi ugyanennyivel kisebbet, stb. A súlyok összegének 1-et kell adnia!!!! Háromtagú mozgó átlag esetén a következő lineárisan csökkenő súlyrendszer adódik: Ez a mozgó átlagolás simít és tovább viszi az idősor tendenciáit is. Mekkora legyen a mozgó átlag tagszáma (m)?

  39. További simító eljárások és szűrők Itt is a nagyobb tagszám jobban simít, de a simított sor az elején rövidül le, azaz csak a múltbeli megfigyelésekhez nem tudunk simított értéket rendelni. Ez az előnye a szimmetrikus súlyozáshoz képest. A gyakorlatban nem a lineáris súlyozás terjedt el, hanem az amikor a súlyok exponenciálisan, azaz azonos ütemben csökkennek. Ekkor az eddig bemutatott háromtagú mozgó átlagolás a következő: ahol 0<α<1 az ún. simító konstans.

  40. Exponenciális simítás súlyai α=0,5 esetén Látható, hogy a súlyok exponenciálisan csökkenek és az összegük 1. Az ábra az α=0,5 és 4 késleltetés esetét mutatja be. Súly 0,5 Késleltetés (időszak) 1 2 3 4

  41. Exponenciális simítás Ha α-nak kis értéket adunk, akkor a simítás erős lesz, ha nagyot (1-hez közelit), akkor gyenge lesz a simítás. Így tudjuk szabályozni, vezérelni a konstanssal a simítás mértékét. Az exponenciális simítás népszerűségének oka az, hogy a simított érték a folyó megfigyelés és a megelőző időszak simított értékéneksúlyozott átlaga!!! Ennek levezetése végtelen tag felhasználása esetén: A nevezőben egy végtelen mértani sor van, melynek összege

  42. Exponenciális simítás azaz Ha a t időpont helyett most t+1-re írjuk fel a formulát, azt kapjuk, hogy A súlyok: a simító konstans, ill. annak komplementere. Jól látható, hogy ha a simító konstans nagy (közel 1), akkor a simítás közel az eredeti sort adja vissza, ha viszont kicsi, akkor erősen simít. Ez a formula egy egyszerű módosítással előrejelzésre is alkalmas – ezért is olyan népszerű.

  43. A HUF/EUR árfolyam - exponenciális simítás α =0,5

  44. α =0,5

  45. A HUF/EUR árfolyam - exponenciális simítás α =0,1

  46. α =0,1

  47. A HUF/EUR árfolyam - exponenciális simítás α =0,9

  48. α =0,9

More Related