1 / 15

Теорема Пифагора

Теорема Пифагора.

anaya
Download Presentation

Теорема Пифагора

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Теорема Пифагора Цель: пользуясь свойствами площадей многоугольников, установить соотношение между гипотенузой и катетами прямоугольного треугольника; сформулировать теорему Пифагора, привести несколько доказательств теоремы; привить навыки и умения при нахождении сторон прямоугольного треугольника. Развивать внимание, активность, аккуратность.

  2. О Пифагоре Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с его теоремой. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о "пифагоровых штанах" - квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора это её простота, красота, значимость. В самом деле, теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал и придает ей особую притягательную силу, делает ее красивой.

  3. Значение теоремы Но, кроме того, теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.), свидетельствует о её широком применении. Теорема почти всюду носит имя Пифагора, но в настоящее время все согласны с тем, что она была открыта не Пифагором. Однако одни полагают, что он первым дал её полноценное доказательство, другие же отказывают ему и в этой заслуге.

  4. Формулировка теоремы   Доказательство теоремы считалось в кругах учащихся средних веков очень трудным и называлось "ослиным мостом" или "бегством убогих", а сама теорема - "ветряной мельницей" или "теоремой невест". Учащиеся даже рисовали карикатуры и составляли стишки вроде этого:                                                            Пифагоровы штаны                                                            Во все стороны равны. с а в       Формулировки теоремы тоже различны. Общепринятой считается следующая: "В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов".

  5. Использование теоремы в решении геометрической задачи       Теорема Пифагора также применяется при геометрических вычислениях: Задача 1:       С аэродрома вылетели одновременно два самолёта: один - на запад, другой - на юг. Через два часа расстояние между ними было 2000 км. Найдите скорости самолётов, если скорость одного составляла 75% скорости другого. Решение:  По теореме Пифагора: 4x2+(0,75x*2)2=200026,25x2=200022,5x=2000 x=8000,75x=0,75*800=600. Ответ: 800 км/ч.; 600 км/ч.

  6. Использование теоремы в решении геометрической задачи Задача 2: Какую наибольшую высоту должна иметь телевизионная вышка, чтобы передачу можно было принимать в радиусе R=200 км? (радиус Земли равен 6380 км.) Решение: Пусть AB= x, BC=R=200 км, OC= r =6380 км. OB=OA+AB OB=r + x. Используя теорему Пифагора, получим x= - r+(r2+R2)1/2=2,3 км. Ответ: 2,3 км.

  7. Доказательство Евклида

  8. Доказательство Мёльманна Площадь данного прямоугольного треугольника, с одной стороны, равна с другой, где p – полупериметр треугольника, r – радиус вписанной в него окружности Имеем: откуда следует, что c2=a2+b2

  9. Доказательство Гарфилда На рисунке 15 три прямоугольных треугольника составляют трапецию. Поэтому площадь этой фигуры можно находить по формуле площади прямоугольной трапеции, либо как сумму площадей трех треугольников. В первом случае эта площадь равна во втором  Приравнивая эти выражения, получаем теорему Пифагора.

  10. Доказательство Хоукинса Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A'CB'. Продолжим гипотенузу A'В' за точку A' до пересечения с линией АВ в точке D. Отрезок В'D будет высотой треугольника В'АВ. Рассмотрим теперь заштрихованный четырехугольник A'АВ'В . Его можно разложить на два равнобедренных треугольника САA' и СВВ' (или на два треугольника A'В'А и A'В'В). SCAA'=b²/2 SCBB'=a²/2 SA'AB'B=(a²+b²)/2 Треугольники A'В'А и A'В'В имеют общее основание с и высоты DA и DB, поэтому : SA'AB'B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2 Сравнивая два полученных выражения для площади, получим: a²+b²=c² Теорема доказана.

  11. Доказательство Вальдхейма Это доказательство также имеет вычислительный характер. Можно использовать рисунки для доказательства основанного на вычислении площадей двумя способами. Для того чтобы доказать теорему пользуясь первым рисунком достаточно только выразить площадь трапеции двумя путями. Sтрапеции=(a+b)²/2 Sтрапеции=a²b²+c²/2 При равнивая правые части получим: a²+b²=c² Теорема доказана.

  12. Доказательство Басхары Доказательство индийского математика Басхары. В пояснение к нему он написал только одну строчку: "Смотри!". Ученые считают, что он выражал площадь квадрата, построенного на гипотенузе, как сумму площадей треугольников (4ab/2) и площадь квадрата (a-b)². Следовательно: c²=4ab/2+(a-b)² c=2ab+a²-2ab+b² c²=a²+b² Теорема доказана.

  13. Векторное доказательство Пусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство: b + c = a откуда имеем c = a - b возводя обе части в квадрат, получим c²=a²+b²-2ab Так как a перпендикулярно b, то ab=0, откуда c² = a² + b² или c² = a² + b² Нами снова доказана теорема Пифагора. Если треугольник АВС - произвольный, то та же формула дает т. н. теорему косинусов, обобщающую теорему Пифагора.

  14. Роль теоремы в практической деятельности В романской архитектуре часто встречается мотив, представленный на этом рисунке.   Если b по-прежнему обозначает ширину окна, то радиусы полуокружностей будут равны R=b/2 и r =b/4. Радиус ρ внутренней окружности можно вычислить из прямоугольного треугольника, изображённого на рисунке пунктиром. Гипотенуза этого треугольника, проходящая через точку касания окружностей, равна b/4+ρ, один катет равен b/4, а другой b/2-ρ.По теореме Пифагора имеем: (b/4+ρ)2=(b/4)2+(b/2-ρ)2 или b2/16+bρ /2+ρ2=b2/16+b2/4-bρ+ρ2, откуда b*ρ/2=b2/4 - bρ.       Разделив на b приводя подобные члены, получим: 3*ρ/2=b/4, ρ=b/6.

  15. Заключение     Всего известно около 500 различных доказательств теоремы Пифагора. Это говорит о неослабевающем интересе к ней со стороны широкой математической общественности. Теорема Пифагора послужила источником для множества обобщений и плодородных идей. Глубина этой древней истины, по-видимому, далеко не исчерпана. Подведение итогов урока. Домашнее задание: пункт 54, № 483(б, в); № 486(а, б).

More Related