810 likes | 2.06k Views
TWIERDZENIE PITAGORASA. Kim był Pitagoras Szkoła pitagorejska Trójkąt prostokątny Twierdzenie Pitagorasa Dowody Zastosowanie Twierdzenia Pitagorasa Twierdzenie Odwrotne Zadania. Spis treści:. (572 p. n. e. – 497 p. n. e.)
E N D
Kim był Pitagoras • Szkoła pitagorejska • Trójkąt prostokątny • Twierdzenie Pitagorasa • Dowody • Zastosowanie Twierdzenia Pitagorasa • Twierdzenie Odwrotne • Zadania Spis treści:
(572 p. n. e. – 497 p. n. e.) Pitagoras urodził się na wyspie Samos położonej po środku Morza Egejskiego. Założył Związek Pitagorejski-bractwo religijno – polityczne, które prowadziło także działalność naukową. Pitagorejczycy uważali, że świat można opisać za pomocą liczb. Ich celem życia było poszukiwanie harmonii w świecie. Odkryli na przykład, jakie długości powinny mieć dwie struny, aby razem pięknie (harmonijnie) brzmiały. Twierdzenie, zwane twierdzeniem Pitagorasa, używane było już wcześniej przez Babilończyków, Egipcjan i Hindusów. Od pitagorejczyków pochodzi prawdopodobnie ogólny dowód i nazwa twierdzenia. Legenda głosi, że po udowodnieniu twierdzenia Pitagoras złożył bogom hekatombę, czyli ofiarę ze stu wołów. Kim był Pitagoras ?
Cytaty • Niełatwo iść przez życie kilkoma drogami równocześnie. • Milcz, albo powiedz coś takiego, co jest lepszym od milczenia. • Tak postępuj z przyjaciółmi, aby nie stali się nieprzyjaciółmi, a z nieprzyjaciółmi tak, żeby jak najprędzej stali się tobie przyjaciółmi • Dwie najkrótsze odpowiedzi: Tak i Nie, wymagają najdłuższego zastanowienia.
Ciekawostki • To nie Pitagoras wymyślił twierdzenie Pitagorasa. Przed Pitagorasem znano to twierdzenie w Egipcie, Chinach, Indiach i Babilonii. • Obecnie znanych jest ponad 200 dowodów twierdzenia Pitagorasa.
Pitagoras z Samos żył w latach od około 570 p. n. e. do około 496 p. n. e. W około 530 r. p.n.e. złożył religijno – polityczny związek w Krotonie, którego później nazwano szkołą pitagorejską. W tym związku obowiązywały bardzo rygorystyczne zasady. Należeć mogli do niego zarówno mężczyźni jak i kobiety. Aby zostać przyjętym do związku należało odbyć wcześniej pięcioletnie próby, które polegały na ćwiczeniu w milczeniu, wstrzemięźliwości, a co najważniejsze uczono bezwzględnego posłuszeństwa dla Pitagorasa. Jednak w okresie próby żaden uczeń nie mógł go oglądać. Jeżeli uczeń przetrzymał okres próby mógł wtedy słuchać samego Pitagorasa, który wykładał zazwyczaj nocą, ale tylko wybranym przekazywał swoją wiedzę, która nie mogła być zdradzona niepowołanym osobom. Żyjący w tym związku mieli wspólne mienie. Związek pitagorejczyków stał się szybko potęgą polityczną oraz opanował miasta w południowej Italii. Członkowie uważali siebie za ludzi o szczególnych zdolnościach i przysposobieniu do sprawowania władzy. Członkowie, jako obowiązek mieli: - dbałość o zdrowie, - dbałość o silne potomstwo, - dbałość o zachowanie tradycji, obyczajów, praw, - nie podporządkowywanie się burzycielom. Szkołapitagorejska
Pitagorejczycy uważali, że tradycja jest tym, co ma pochodzenie boskie, a to właśnie ono – bóstwo rządzi światem oraz kieruje ludźmi. Pitagoras był bardzo wymagający. Potępiał każdą namiętność, rozkosz płciową, wymagał od uczniów umiaru oraz bronił zdrowej miłości. Uczniowie musieli codziennie przeprowadzać rozrachunek z tego jak postępowali. Gdy wracali do domów mieli odpowiadać sobie na takie trzy pytania: - jaki popełniłem błąd? - co zdziałałem? - jakiego zaniedbałem obowiązku? Takiemu oczyszczaniu oraz utrzymaniu w umiarze miała służyć również medycyna oraz muzyka. Medycyna oczyszczała ciało, natomiast muzyka służyła oczyszczeniu oraz uzdrowieniu i umocnieniu duszy. Szkoła pitagorejczyków była religijno – politycznym związkiem, ale szczyciła się również dorobkiem naukowym. Z filozofią pitagorejską była ściśle połączona matematyka. Szczególne znaczenie miały liczby. Mottem pitagorejczyków było: "wszystko jest liczbą". Szkoła pitagorejska istniała do około połowy IV w. p.n.e.
Szkoła Ateńska – malowidło ścienne namalowane przez Rafaela w latach 1509–1510
przeciwprostokątna przyprostokątna Trójkąt prostokątny przyprostokątna
Twierdzenie W trójkącie prostokątnym suma pól kwadratów zbudowanych na przyprostokątnych jest równa polu kwadratu zbudowanego na przeciwprostokątnej. P3=c2 P2=b2 b c a P1=a2 P1, P 2 - pola kwadratów zbudowanych na przyprostokątnych P3 – pola kwadratu zbudowanego na przeciwprostokątnej P3= P2 + P1
a, b – długości przyprostokątnych c – długość przeciwprostokątnej c b Jeśli trójkąt jest prostokątny, to suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej. a c2 = a2 + b2 kąt prosty
Twierdzenie Pitagorasa zachowane na zwoju z greckim kodeksem, wiek IX n.e.
a b b c a c C2 c c a a Dowód I c b b b a b
b b c b b2 a a2 a a c c a Dowód II a b
Długość boku kwadratu ABCD wynosi a+b. Zatem pole tego kwadratu wynosi (a+b)2. Kwadrat ten składa się z kwadratu o boku c oraz czterech przystających trójkątów prostokątnych. Jego pole możemy więc zapisać: Porównując ze sobą oba pola otrzymamy: Ostatecznie otrzymujemy:
C ∆ADC ~ ∆CDB ~ ∆ABC (cecha KKK) a c2 b c2 c1 B D A Dowód III (dowód z podobieństwa trójkątów) c Z podobieństwa tych trójkątów zachodzą proporcje: czyli oraz czyli stąd a zatem
Zastosowanie twierdzenia Pitagorasa w życiu codziennym : • budownictwo • obliczenie drogi "na skróty", • obliczanie przekątnej telewizora, • obliczanie wysokości np. budynku, góry, • określenie precyzyjnej wielkości rampy (przy rozładunkach i sportach ekstremalnych), • obliczenia wartości w macierzach, dziś powszechnie wykorzystywane w obliczeniach komputerowych, • stosowanie skuteczniejszej strategii obrony w grze w baseball
Jeśli w trójkącie suma kwadratów długości dwóch krótszych boków jest równa kwadratowi długości najdłuższego boku, to trójkąt jest prostokątny. ? Twierdzenie odwrotne do twierdzenia pitagorasa a2 + b2 = c2
Przykładowe zadania
Zadanie 1. (Twierdzenie Pitagorasa) W trójkącie prostokątnym przyprostokątne mają długości: 3cm i 4 cm . Oblicz jaką długość ma przeciwprostokątna tego trójkąta. Trójkąt Egipski a – 3 cm b – 4 cm c - ? a2 + b2 = c2 c2 = (3 cm)2+ (4 cm)2 c2 = 9 cm2 + 16 cm2 c2 = 25 cm2 c = √25 cm2 c = 5 cm Odpowiedź: Przeciwprostokątna ma długość 5 cm .
Zadanie 2. (T. P.) Przeciwprostokątna trójkątna prostokątnego ma długość 13 cm, a jedna z przyprostokątnych (krótsza) ma długość 5 cm . Oblicz długość drugiej przyprostokątnej. a – 5 cm b - ? c – 13 cm a2 + b2 = c2 52 +b2 =132 25 + b2 = 169 b2 = 169 – 25 b2 = 144 b = √144 b = 12 [cm] Odpowiedź: Długość dłuższej przyprostokątnej wynosi 12 cm .
Zadanie 1. (Twierdzenie odwrotne do t. p.) Czy trójkąt o podanych długościach 2 cm, 4 cm, √20 cm, jest prostokątny? ? 22 + 42 = (√20)2 4 + 16 = 20 20 = 20 [cm] Odpowiedź: Trójkąt o bokach 2 cm, 4 cm, √20, JEST PROSTOKĄTNY.
Zadanie 2. (t. o. do t. p.) Sprawdź, czy trójkąt o podanych długościach boków jest prostokątnych. 7 cm, 13 cm, 12 cm. ? 72 + 122 = 132 49 + 144 = 169 193 = 169 - Sprzeczność Odpowiedź: Trójkąt o bokach 7 cm, 12 cm i 13 cm, NIE JEST PROSTOKĄTNY!
Przygotowały: Gomułka Sylwia Kotnis Agata Pasich Katarzyna KONIEC IIb