120 likes | 1.18k Views
TEOREMA PYTHAGORAS. KELAS : VIII SEMESTER : 1 O L E H DRS. SUDARSONO, M.ED SMP 11 YOGYAKARTA. LANJUT. TEOREMA PYTHAGORAS. I NDIKATOR. BERTANDA PANAH YANG DIKEHENDAKI. PENGERTIAN. Contoh soal. STANDAR KOMPETE N SI. Latihan-1. KOMPETENSI DASAR.
E N D
TEOREMA PYTHAGORAS KELAS : VIII SEMESTER : 1 O L E H DRS. SUDARSONO, M.ED SMP 11 YOGYAKARTA LANJUT
TEOREMA PYTHAGORAS INDIKATOR BERTANDA PANAH YANG DIKEHENDAKI PENGERTIAN Contoh soal STANDAR KOMPETENSI Latihan-1 KOMPETENSI DASAR INDIKATOR.1 Latihan-2 INDIKATOR.2 INDIKATOR.3 KEMBALI
PENGERTIAN PYTHAGORAS • Pythagoras adalah seorang ahli Matematika Yunani,beliau yakin bahwa matematika menyimpan semua rahasia alam semesta dan percaya bahwa beberapa angka memiliki keajaiban. • Beliau diingat karena rumus sederhana dalam geometri tentang ketiga sisi dalam segitiga siku-siku. Rumus itu di kenal sebagai teorema pythagoras. kembali
STANDAR KOMPETENSI MENGGUNAKAN TEOREMA PYTHAGORAS • DALAM PEMECAHAN MASALAH KEMBALI
KOMPETENSI DASAR 3.1. MENGGUNAKAN TEOREMA PYTHAGORAS 3.2. MEMECAHKAN MASALAH PADA BANGUN DATAR YANG BERKAITAN DENGAN TEOREMA PYTHAGORAS KEMBALI
INDIKATOR : 1 LANJUT
INDIKATOR: 2 MENEMUKAN RUMUS TEOREMA PYTHAGORAS b a a b a c b b b2 c b • www c2 c b c a a a b a b a Luas daerah yang tidak diarsir pada gambar 1 dan diatas adalah: luas persegi ABCD – (4xLuas daerah yang diarsir) C2 = (a+b)x(a+b) – 4x ab Maka: C2 = (a+b)2 - 2xaxb pada gambar 2: a2 + b2 = (a+b) x ( a+b) – 4 x ½ x axb a2 + b2 = (a+b)2 - 2xaxb Jadi : C2 = a2 + b2 lanjut
Indikator : 3teorema pythagoras dalam bentuk rumus c Dalam segitiga siku-siku di C Berlaku rumus: AB2 = BC2 + AC2 Atau c2 a B c a2 a c a c b A a C b2 b b b C2 = a2 + b2 kembali
C C A B A B 2. CONTOH SOAL Segi tiga ABC siku-siku di titik A ,diketahui panjang AB = 3 cm dan AC = 4 cm,hitunglah panjang BC. Penyelesaian: BC2 = AB2 + AC2 = 32 + 42 = 9 + 16 = 25 BC = √25 = 5 Jadi panjang BC = 5 Cm Segi tiga ABC siku-siku di titik A, diketahui panjang sisi miring BC = 10 cm, dan AB = 6 cm, hitunglah panjang sisi AC Penyelesaian: BC2 = AB2 + AC2 AC2 = 100 - 36 102 = 62 + AC2 = 64 100 = 36 + AC2 AC = √64 = 8 Jadi panjang sisi AC = 8 Cm kembali