1 / 15

Turunan dari fungsi-fungsi implisit

Turunan dari fungsi-fungsi implisit. Tim Dosen Kalkulus II. Satu variabel bebas. Jika persamaan dimana adalah fungsi dari variabel x dan yang dapat diturunkan , y adalah fungsi x, maka dimana. Contoh. Carilah dan jika. Dua variabel bebas.

yehuda
Download Presentation

Turunan dari fungsi-fungsi implisit

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Turunandarifungsi-fungsiimplisit Tim DosenKalkulus II

  2. Satuvariabelbebas • Jikapersamaandimanaadalahfungsidarivariabel x dan yang dapatditurunkan, y adalahfungsi x, maka dimana

  3. Contoh • Carilahdanjika

  4. Duavariabelbebas • Jika , dimanafungsidarivariabel-variabel x, y, dan z; z sebagaifungsidarivariabel x dan y, maka dan dimana

  5. Increment dan Total Diferensial

  6. Increment fungsiduavariabel • Jikamaka increment dinyatakan:

  7. Total diferensialfungsiduavariabel • Jikamaka total diferensial dinyatakan:

  8. Jikadananggapbahwa dapatditurunkandititikmaka dimanasehingga Maka, ketikadankecil,

  9. Increment fungsitigavariabel • Jikamaka increment dinyatakan:

  10. Total diferensialfungsitigavariabel • Jikamaka total diferensial dinyatakan:

  11. Jikadananggapbahwa dapatditurunkandititik maka dimanasehingga Maka, ketikadankecil,

  12. Increment fungsibeberapavariabel • Jikamaka increment dinyatakan:

  13. Total diferensialfungsibeberapavariabel • Jikamaka total diferensial dinyatakan:

  14. Jikadananggapbahwa dapatditurunkandititik maka dimanasehingga Maka, ketikakecil,

  15. Contoh: • Carilahdandari: 1. 2. 3.

More Related