1 / 24

TURUNAN FUNGSI ALJABAR

TURUNAN FUNGSI ALJABAR. LAMBANG TURUNAN. y = f(x). KONSEP LIMIT. Contoh : Tentukanlah turunan pertama dari x n Jawab. = = =. RUMUS TURUNAN FUNGSI ALJABAR. f(x) = x n  f ’ (x) = nx n-1. Contoh : Tentukanlah turunan pertama dari x 7 Jawab Dik . n = 7 Dit f ’ ( x)

fran
Download Presentation

TURUNAN FUNGSI ALJABAR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TURUNAN FUNGSI ALJABAR

  2. LAMBANG TURUNAN y = f(x)

  3. KONSEP LIMIT

  4. Contoh : Tentukanlahturunanpertamadarixn Jawab

  5. = = =

  6. RUMUS TURUNAN FUNGSI ALJABAR f(x) = xn  f ’(x) = nxn-1

  7. Contoh : Tentukanlahturunanpertamadari x7 Jawab Dik. n = 7 Dit f ’(x) f ’(x) = nxn-1 = 7x6

  8. SIFAT-SIFAT TURUNAN FUNGSI ALJABAR

  9. 1 f(x) = k f ’x) = 0 ; k = konstanta Contoh : Tentukanturunanpertamadari f(x) = k Jawab : f ’ (x) = 0

  10. 2 f(x) = axn f ’ (x) = anxn-1 ; a R Contoh : Tentukanturunankeduadari f(x) = 10x-4

  11. Jawab : Dik. a = 10 n = -4 Dit. f 2(x)  f ’ (x) = a.nxn-1 f ”(x) = a.n.(n-1)xn-2 f ” (x) = 10.-4.(-4-1)x-4-2 f ” (x) = 10.-4.(-5)x-6 = 200x-6

  12. 3 f(x) = u(x) ± v(x) f ’(x) = u’(x) ± v’(x) Contoh : Tentukanturunanpertamadari f(x) = 2x3 + 5x-2 - 8

  13. Jawab : Dik. u(x) = 2x3 v(x) = 5x-2 w(x) = -8 Dit. f ’(x)  f ’(x) = u’(x) ± v’(x) ± w’(x) = 6x2 -10x-3 – 0 = 6x2 -10x-3

  14. 4 f(x) = k.u(x)n f1(x) = k. n.u’(x).u(x) ; k,n = konstanta Contoh : f(x) = 5(4x + 3)2

  15. Jawab : Dik k = 5 n = 2 u(x) = (4x+3) Ditf1(x) f1(x) = k. n.u’ (x).u(x) = 5.2.4.(4x + 3) = 40(4x + 3) = 160x + 120

  16. 5 f(x) = u(x).v(x)  f1(x) = u’(x).v(x) + u(x).v’(x) Contoh :   f(x) = 2(x3 +5x2)

  17. Jawab : Dik u(x) = 2 v(x) = (x3 +5x2) Ditf1(x) f1(x) = u’(x).v(x) + u(x).v’(x) = 0. (x3 +5x2) + 2(3x2 +10x) = 6x2 +20x

  18. 6  Contoh :

  19. Jawab : Dik u(x) = x2 v(x) = (4x + 1) Dit f ’(x)

  20. LATIHAN SOAL UN

  21. LATIHAN 1 Turunan pertama dari x2 + 2 – 1/x adalah A. 2x + x2D. B. C.E. x3 + 2x – x-2

  22. JAWAB  X2 + 2 – X-1 • f(x) = u(x) ± v(x) f1(x) = u’(x) ± v’(x) = 2x + 0 – (-1.x-2) = 2x + x-2  D

  23. LATIHAN 1 Diketahui A. D. B. E. C.

  24. JAWAB  A

More Related