600 likes | 1.17k Views
MATRIKS. Konsep Matriks. Macam-macam Matriks. Kompetensi Dasar : Mendeskripsikan macam-maca matriks Indikator : Matriks ditentukan unsur dan notasinya Matriks dibedakan menurut jenis dan relasinya. Macam – macam Matriks. Pengertian Matriks.
E N D
MATRIKS Konsep Matriks
Macam-macam Matriks Kompetensi Dasar : Mendeskripsikan macam-maca matriks Indikator : • Matriks ditentukan unsur dan notasinya • Matriks dibedakan menurut jenis dan relasinya Matriks
Macam – macam Matriks Pengertian Matriks • Matriks adalah susunan bilangan-bilangan yang terdiri atas baris-baris dan kolom-kolom. • Masing-masing bilangan dalam matriks disebut entri atau elemen. Ordo (ukuran) matriks adalah jumlah baris kali jumlah kolom. a11 a12…….a1j ……a1n a21 a22 ……a2j…….a2n : : : : ai1 ai2 ……aij…….. ain : : : : am1 am2……amj……. amn baris A = Notasi: Matriks: A = [aij] Elemen: (A)ij = aij Ordo A: m x n kolom Matriks
2 5 1 -8 25 -2 0 14 8 Macam-macam Matriks 1. Matriks Baris Matriks baris adalah matriks yang hanya terdiri dari satu baris. Matriks
2 -7 9 2 1 Macam-macam Matriks 2. Matriks Kolom Matriks Kolom adalah matriks yang hanya terdiri dari satu kolom Matriks
Macam – macam Matriks 3. Matriks Persegi Matriks persegi (bujur sangkar) adalah matriks yang jumlah baris dan jumlah kolom sama. 1 2 4 2 2 2 3 3 3 Trace(A) = 1 + 2 + 3 diagonal utama Trace dari matriks adalah jumlahan elemen-elemen diagonal utama Matriks
3 2 4 1 A = DETERMINAN DAN INVERS Contoh: Invers matriks 2x2 A-1 I = = Matriks
Macam- macam Matriks 4. Matriks Nol Matriks nol adalah matriks yang semua elemennya nol 0 0 0 0 0 0 0 Matriks identitas adalah matriks persegi yang elemen diagonal utamanya 1 dan elemen lainnya 0 I3 I4 I2 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 Matriks
0 -1 1 0 0 1 -1 0 A = AT= ½√2 -½√2 ½√2 ½√2 ½√2 ½√2 -½√2 ½√2 B = BT= Macam-macam Matriks 5. Matriks ortogonal Matriks A orthogonal jika dan hanya jika AT = A –1 = A-1 = B-1 (A-1)T = (AT)-1 A-1 AT Jika A adalah matriks orthogonal, maka(A-1)T = (AT)-1 Matriks
4 2 6 7 5 3 -9 7 A = Macam – macam Matriks Definisi: Transpose mariks A adalah matriks AT kolom-kolomnya adalah baris-baris dari A, baris-barisnya adalah kolom-kolom dari A. 4 5 2 3 6 -9 77 AT = A’ = • [AT]ij = [A]ji n x m Jika A adalah matriks m x n, maka matriks transpose AT berukuran ……….. Matriks
1 2 4 2 1 3 1 2 4 2 1 3 A = B = 1 2 2 2 1 3 2 1 2 2 1 3 C = D = 1 2 4 2 2 2 x 2 4 2 2 2 E = F = ? ? ? ? ? ? ? ? ? • 2 2 • 5 6 • 9 0 7 H = G = Macam – macam Matriks Kesamaan dua matriks • Dua matriks sama jika ukuran sama dan setiap entri yang bersesuaian sama. A = B C ≠ D E = F jika x = 1 2 2 2 5 4 6 G = H 9 0 7 Matriks
4 2 2 3 4 2 2 3 A = A’ = Macam-macam Matriks Matriks Simetri Matriks A disebut simetris jika dan hanya jika A = AT A simetri 1 2 3 4 2 5 7 0 37 8 2 4 0 2 9 A = = AT Matriks
4 2 6 7 5 3 -9 7 Macam-macam Matriks Sifat-sifat transpose matriks • Transpose dari A transpose adalah A: • (AT )T = A (AT)T A = A AT Contoh: 4 5 2 3 6 -9 77 4 5 2 3 6 -9 77 Matriks
T T T A A+B B = + • (A+B)T = • AT • BT + Macam-macam Matriks 2. (A+B)T = AT + BT Matriks
Macam-macam Matriks 3. (kA)T = k(A) T untuk skalar k T A kA T k • (kA)T = k(A)T Matriks
T T T B AB A Macam-macam Matriks 4. (AB)T = BT AT = • (AB)T • = BTAT • AB Matriks
Macam-macam Matriks Soal : Isilah titik-titik di bawah ini • A simetri maka A + AT= …….. • ((AT)T)T = ……. • (ABC)T = ……. • ((k+a)A)T = …..... • (A + B + C)T = ………. • Kunci: • 2A • AT • CTBTAT • (k+a)AT • AT + BT + CT Matriks
OPERASI MATRIKS Kompetesi Dasar Menyelesaikan Operasi Matriks Indikator • Dua matriks atau lebih ditentukan hasil penjumlahan atau pengurangannya • Dua matriks atau lebih ditentukan hasil kalinya Matriks
10 22 1 -1 2 6 7 5 A = B = 10+2 22+6 1+7 -1+5 12 28 8 4 A + B = = 10-2 22-6 1-7 -1-5 8 16 -6 -6 A - B = = OPERASI MATRIKS Penjumlahan dan pengurangan dua matriks Contoh : Matriks
OPERASI MATRIKS Apa syarat agar dua matriks dapat dijumlahkan? Jawab: Ordo dua matriks tersebut sama • A = [aij] dan B = [bij] berukuran sama, • A + B didefinisikan: (A + B)ij = (A)ij + (B)ij = aij + bij Matriks
1 4 -9 3 7 0 5 9 -13 7 3 1 -2 4 -5 9 -4 3 K = L = 25 30 5 35 10 15 5 6 1 7 2 3 C = D = ? ? ? ? ? ? C + D = ? ? ? ? ? ? ? ? ? K + L = OPERASI MATRIKS Jumlah dua matriks D + C = L + K = Apa kesimpulanmu? Apakah jumlahan matriks bersifat komutatif? Matriks
-8 0 • 4 7 2 • -1 8 4 • 6 -1 2 • 9 9 8 • -2 16 8 • 7 2 • 5 2 6 • -1 8 4 D = • 7 2 • 5 2 6 C = C +D = E = 0 0 0 0 0 0 0 0 0 0 0 0 A = B = OPERASI MATRIKS • Soal: • C + D =… • C + E = … • A + B = … Feedback: Matriks
5 6 1 7 2 3 A = OPERASI MATRIKS Hasil kali skalar dengan matriks 5x5 25 5x1 5 5x6 30 5A = = 5x5 35 5x3 15 5x2 10 Apa hubungan H dengan A? 250 300 50 350 100 150 H = 50 H = A • Diberikan matriks A = [aij] dan skalar c, perkalian skalar cA mempunyai entri-entri sebagai berikut: • (cA)ij = c.(A)ij = caij • Catatan: Pada himpunan Mmxn, perkalian matriks dengan skalar bersifat tertutup (menghasilkan matriks dengan ordo yang sama) Matriks
1 4 -9 3 7 0 5 9 -13 K = 4 16 -36 12 28 0 20 36 -52 4K = 5 20 -45 15 35 0 25 45 -65 5K = OPERASI MATRIKS • K 3 x 3 Matriks
7 2 • 5 2 6 A = 0 0 0 0 0 0 0 0 0 0 0 0 A = = 0*2 0*7 0*2 0*5 0*2 0*6 7*0 7*0 7*0 7*0 7*0 7*0 cA = cA = OPERASI MATRIKS • Diketahui bahwa cA adalah matriks nol. Apa kesimpulan Anda tentang A dan c? Contoh: c = 7 c = 0 kesimpulan Kasus 1: c = 0 dan A matriks sembarang. Kasus 2: A matriks nol dan c bisa berapa saja. Matriks
∑ aikbkj = ai1b1j +ai2b2j+………airbrj k = 1 1 2 7 -6 4 -9 2 3 4 5 8 -7 9 -4 1 -5 7 -8 A = B = OPERASI MATRIKS Perkalian matriks dengan matriks • Definisi: • Jika A = [aij] berukuran m x r , dan B = [bij] berukuran r x n, maka matriks hasil kali A dan B, yaitu C = AB mempunyai elemen-elemen yang didefinisikan sebagai berikut: r • (C)ij = (AB)ij = A B AB • Syarat: r xn m xn m xr Tentukan AB dan BA Matriks
1 2 7-6 4-9 11 3 2 3 4 5 8 -7 9 -4 1 -5 7 -8 A = B = OPERASI MATRIKS Perkalian matriks dengan matriks Contoh : = 2.1+3.7+4.4+5.11-35 -49-35 -94-55 94-35 -49 -35 -94 -55 A B = = BA tidak didefinisikan Matriks
A B B A m x n m x n n x k n x k A = B = 2 3 2 3 3 -3 -2 2 OPERASI MATRIKS 1. Diberikan A dan B, AB dan BA terdefinisi. Apa kesimpulanmu? m = k AB dan BA matriks persegi ABmxm ABnxn 2. AB = O matriks nol, apakah salah satu dari A atau B pasti matriks nol? AB = 0 0 0 0 AB matriks nol, belum tentu A atau B matriks nol Matriks
1 2 -9 0 8 0 5 6 2 3 4 5 4 7 9 0 2 3 5 6 A = B = 7 -11 4 3 5 -6 1 8 9 5 6 2 5 6 -9 0 0 -4 7 8 9 C = D = OPERASI MATRIKS Contoh 1: Tentukan hasil kalinya jika terdefinisi. • A B = ?? • AC = ?? • BD = ?? • CD = ?? • DB = ?? Matriks
Contoh 2: A = 2 3 1 2 A A A …A OPERASI MATRIKS 2 3 1 2 2 3 1 2 A2 = 2 3 1 2 2 3 1 2 2 3 1 2 A3 = A x A2 = A0 = I An = n faktor An+m = An Am Matriks
DAN DETERMINAN INVERS Kompetensi Dasar: Menentukan determinan dan invers Indikator : • Matriks ditentukan determinannya • Matriks ditentukan inversnya Matriks
DETERMINAN DAN INVERS Determinan Matriks ordo 2 x 2 Nilai determinan suatu matriks ordo 2 x 2 adalah hasil kali elemen-elemen diagonal utama dikurangi hasil kali elemen pada diagonal kedua. Misalkan diketahui matriks A berordo 2 x 2, A = Determinan A adalah det A = = ad - bc Matriks
DETERMINAN DAN INVERS B adalah invers dari matriks A, jika AB = BA = I matriks identitas, ditulis B = A-1 I A A A-1 A-1 = = Jika A = , maka Matriks
DETERMINAN DAN INVERS Contoh 1 : Tentukan invers dari matriks Jawab : det B = (-5) . (-4) – (-2) . (-10) = 20 – 20 = 0 , sehingga matriks B tidak memiliki invers Matriks
2/3 -1/5 -1/5 5/3 1 0 0 1 5 1 1 2 0 1 0 2 0 0 4 1 1 0 0 1 c. d. a. a. b. d. DETERMINAN DAN INVERS Contoh : 1. Kapan matriks TIDAK mempunyai invers? ad-bc = 0 2. Tentukan invers matriks berikut ini b. tidak mempunyai invers c. tidak mempunyai invers Matriks
4 2 2 2 4 2 2 2 ½ -½ -½ 1 ½ -½ -½ 1 4 2 1 2 2 1 3 3 1 4 2 1 2 2 1 3 3 1 ½ -½ 1 -½ -½ 1 0 3 -2 ½ -½ 1 -½ -½ 1 0 3 -2 DETERMINAN DAN INVERS Contoh 2 : Diketahui matriks Tunjukkan bahwa A.A-1 = A-1.A = I dan B.B-1 = B-1. B = I 1 0 0 1 = = A A-1 A-1 A I 1 0 0 0 1 0 0 0 1 = = B I B-1 B B-1 Matriks
DETERMINAN DAN INVERS Matriks ordo 3 x 3 Determinan Matriks Ordo 3 x 3 Dengan aturan Sarrus, determinan A adalah sebagai berikut. _ _ _ + + + Matriks
DETERMINAN DAN INVERS Sistem Persamaan Linear Dua Variabel dengan Menggunakan Matriks Misal SPL Persamaan tersebut dapat di ubah menjadi bentuk matriks berikut Matriks
DETERMINAN DAN INVERS maka dapat ditulis Misalkan Matriks
DETERMINAN DAN INVERS Contoh : Tentukan nilai x dan y yang memenuhi sistem persamaan linear Jawab : Sistem persamaan Jika dibuat dalam bentuk matriks menjadi Matriks
DETERMINAN DAN INVERS Perkalian matriks berbentuk AP = B dengan Jadi nilai x = 5 dan y = 2 Matriks
DETERMINAN DAN INVERS Penyelesaian sistem persamaan linear dua variabel dengan menggunakan determinan atau aturan Cramer. Misal SPL Maka dengan aturan Cramer, diperoleh dan Matriks
DETERMINAN DAN INVERS Contoh : Gunakan aturan Cramer untuk menentukan himpunan penyelesaian sistem persamaan linear Jawab : Dengan aturan Cramer diperoleh Jadi, himpunan penyelesaiannya adalah {(1,2)}. Matriks
DETERMINAN DAN INVERS • Menyelesaikan Sistem Persamaan Linear Tiga Variabel dengan menggunakan Matriks • SPL dalam bentuk: • Dapat disajikan dalam bentuk persamaan matriks: a11x1 + a12x2 + a13x3 +….. ..a1nxn = b1 a21x1 + a22x2 + a23x3 +…….a2nxn = b2 am1x1 + am2x2 + am3x3 + ……amnxn = bm a11 a12……...a1n a21 a22 ……..a2n : : : am1 am2…… amn = x1 x2 : xn b1 b2 : bn x b A:matriks koefisien Ax = b Matriks
DETERMINAN DAN INVERS Contoh : x1 + 2x2 + x3 = 6 -x2 + x3 = 1 4x1 + 2x2 + x3 = 4 SPL Dapat disajikan dalam bentuk matriks sebagai berikut 6 1 4 6 1 4 1 2 1 0 -1 1 4 2 1 x1 x2 x3 1.x1 +2.x2 + 1.x3 0.x1 + -1.x2 + 1.x3 4.x1 +2.x2 + 1.x3 = = Matriks
1 2 3 7 5 6 -9 3 -7 A= DETERMINAN DAN INVERS Perkalian dengan matriks identitas 1 2 3 7 5 6 -9 3 -7 1 2 3 7 5 6 -9 3 -7 1 0 0 0 1 0 0 0 1 X A.I = = 1 2 3 7 5 6 -9 3 -7 1 2 3 7 5 6 -9 3 -7 1 0 0 0 1 0 0 0 1 X = I.A = Matriks
1 4 -9 3 7 0 5 9 -13 1 4 -9 3 7 0 5 9 -13 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 4 -9 3 7 0 5 9 -13 1 4 -9 3 7 0 5 9 -13 DETERMINAN DAN INVERS • AB = A dan BA = A, apa kesimpulanmu? = = A I I A A = = AB = A dan BA = A, maka B = I (I matriks identitas) Matriks
4 2 2 2 a b c d A-1 ½ -½ -½ 1 A-1 1 ad - bc d -b -c a DETERMINAN DAN INVERS 1 0 0 1 = I A-1 A 1 0 0 1 = = = Jika ad –bc = 0 maka A TIDAK mempunyai invers. Matriks
DETERMINAN DAN INVERS • Invers dari matriks jika ada adalah tunggal: Jika B = A-1 dan C = A-1, maka B = C (A-1)-1 2.(A-1)-1 = A 4 2 2 2 A = 1 0 0 1 ? ½ -½ -½ 1 = ½ -½ -½ 1 A-1 = A-1 4 2 2 2 A Matriks
4 2 2 2 ½ -½ -½ 1 A = A-1 = 0.625 -1 -1 1.625 (A3)-1 = DETERMINAN DAN INVERS • Jika A mempunyai invers maka An mempunyai invers dan (An)-1 = (A-1)n, n = 0, 1, 2, 3,… 104 64 64 40 4 2 2 2 4 2 2 2 4 2 2 2 A3 = = sama ½ -½ -½ 1 ½ -½ -½ 1 ½ -½ -½ 1 0.625 -1 -1 1.625 (A-1)3 = = Matriks