• 450 likes • 914 Views
ALJABAR VEKTOR & MATRIKS (Vector Analysis & Matrices ). Pendahuluan Pada Fisika : a. Besaran Vektor . b. Besaran Skalar
E N D
ALJABAR VEKTOR & MATRIKS (Vector Analysis & Matrices) Pendahuluan PadaFisika : a. BesaranVektor. b. BesaranSkalar Besaran : sesuatuygdapatdiukurdanbesarnyadinyatakan.denganangka*DefinisibesaranVektor : suatubesaranygbesarnyadapat.diukur (mempunyainilai) danmempunyaiarah.Contoh : kecepatan, gaya, dsb*DefinisibesaranSkalar : suatubesaranygbesarnyadapat.diukurtapitidakmempunyaiarah.Contoh : massa, panjang, dsb.
Operasi2penjumlahan, pengurangandanperkalianyglazim.dalamaljabarbilangan, dengandefinisiygsama, dapat di- .perluaskedalamaljabarVektor • DefinisidasarAljabarVektor 1. DuabuahvektorAdanBsamajikamemilikibesardan.arahygsama, tanpamemperhatikantitikawalnya, A = B 2. SebuahvektorygarahnyaberlawanandenganvektorA.tapimemilikibesarygsamadinyatakanoleh – A 3. Jumlah (resultan) dariduavektor, AdanBadalahvektorC, .ygdibentukdenganmenempatkantitikawalBpadatitik. terminal A, lalumenghubungkantitikawalAke terminal B, .C = A + B 4. SelisihvektorAdanB, ygdinyatakanolehA – BadalahC BAB 1. VEKTOR dan SKALAR
ygbiladitambahkanBmenghasilkanvektorA. .C = A – B. = A + (-B) .BilaA = B, maka A – B = 0 sebagaivektornol. 5. Hasil kalivektorAdenganskalar m adalahvektor mAyg.besarnya |m| kali besarnyaAdanmemilikiarahygsamaatau.berlawananA,bergantungpadaapakah m positif /negatif. . Bila m = 0 maka mAadalahvektornol. .
BilaA, BdanCadalah vektor2, m dan n adalah skalar2, maka : 1. A + B = B + A⇨ hukumKomutatifpenjumlahan 2. A + (B + C) = (A + B) + C ⇨ hukumAsosiatifpenjumlahan 3. mA = Am ⇨ hukumKomutatifperkalian 4. m(nA) = (mn)A ⇨ hukumAsosiatifperkalian 5. (m + n)A = mA + nA ⇨ hukumDistributif 6. m(A + B) = mA + mB ⇨ hukumDistributif Hukum-hukumAljabarVektor
VektorSatuanadalahsebuahvektorygbesarnya 1(satu) BilaAadalahvektorygbesarnyaA≠ 0makaadalahsebuahvektorsatuanygarahnyasamadenganA. - SetiapvektorAdapatdinyatakanolehsebuahvektorsatuan. a dalamarah A, dikalikandenganbesarnyaA. JadiA = Aa - Vektorsatuanmerupakanvektorygpanjangnyasatusatuan • SetiapvektorA = | | yang bukannol, mempunyaivektor.satuan : Ā = = | | -Besar (panjang) vektor.MisalnyaA = | |adalahvektor di R2, makabesarvektorA : . | A | = VEKTOR SATUAN
1. Sebutkanbeberapabesaranvektordanbesaranskalar, ma- . sing-masingdelapanmacam ? 2. Hitunglahbesar (panjang) vektordanvektorsatuandari.vektorA = 〔〕? 3. Buktikanbahwapenjumlahanvektoradalahkomutatif, yaitu.A + B = B + A ? Secaragrafis ! 4. Diketahui vektor2 : K = 〔 〕, L = 〔〕 dan M = 〔〕bila. 3K – 2L = - Mmakahitungnilaix ? 5. Tentukanresultan vektor2berikut : .Vektor A, 15 m arahbaratlaut, B. 25 m. 30odisebelah.utaradaritimurdan C, 40 m keselatan ? Contohsoal
1a. Vektor : percepatan, momentum, berat, energi, medanlistrik, me- .dan magnet, medangravitasi, kohesi, adhesi, aruslistrik, pegasdll. 1b. Skalar : waktu, suhu, kalor, kalorjenis, volume, luas, jarak, massa.jenis, intensitascahaya, perbesaranlensa, dll. 2. Besar(panjang) vektorA : A = 〔〕 .A = |A| = = = 5 .Vektorsatuan, A = = 〔 〕 = 〔〕 3. HukumKomutatifpenjumlahan : A + B = B + A.bukti : Q OP + PQ = OQ ⇔ A + B = C .P B OR + RQ = OR⇔ A + B = C .ACAJadi : .C A + B = B + A .OBR Jawabancontohsoal
4. 3K – 2L = - M . 3 〔 - 2 〔 = - 〔 .〔 + 〔 = 〔 . 6 – 2x = -2 . x = . x = 4 5. A = 15 m arahbaratlaut. B = 25 m arahutaradaritimur 30o. C = 40 m keselatan Jawabancontohsoal
U.BD = A + B + C.30oSecaragrafis : .A- padattk terminal Atempatkan.45oCttkpangkal B .BT - padattk B tempatkanttk pang.kal C.D- resultan D dibentikdengan.menghubungkanttkpangkalA . S denganttk terminal C, jadi. D = A+B+C Secaragrafis, resultanmempunyaibesar 4,5 satuan, jadiresultan D = 22,5 m denganarah 60odisebelahselatandaritimur. Jawabancontohsoal
1. a. NyatakanvektorAsecaraaljabar ? 3A(4,3) b. HitunglahbesarvektorA ? c. Tentukanbesarvektorsatuan A ? 4 2. HitunglahbesarvektordanvektorsatuandarivektorB = 〔 〕 ? 3. Buktikanbahwapenjumlahanvektoradalahassosiatifyaitu.A + B + C = (A + B) + C ? 4. Sebuahmobil sedan bergerakkearahutarasejauh 4km, lalu 8km .kearahtimurlaut. Tentukanvektorperpindahanresultannya se- .caragrafisdananalitis, gambarkanperpindahanmobilsecara.grafis ? Latihansoal/PR
- Himpunan vektor2satuanpentingadalahygarahnyamenurut. sumbu2x, y dan z positifsistemkoordinattegak-lurusruang. 3-dimensi, dinyatakanoleh i, j dan k. zC k A 0 i j y B xA BAB 2. VEKTOR2 SATUAN TEGAK-LURUS i, j dan k
- Umumnyamenggunakansistemkoordinattegak-lurusaturan.tangankanan, kecualiadapernyataan lain. - Sisteminidianalogikandengansebuahsekrupberulirkanan.ygdiputar 90odariOx keOyakanmajudalamarahsb z pos. - BilatigabuahvektorA, BdanCygtitikpangkalnyaberhim- . pit dantakkoplanar(tidakterletakpadaatausejajarbidangyg.sama)dikatakanmembentuksebuahsistemtangankananatau.sistemdekstral. Analogidengansebuahsekrup (baut)berulir.kananygdiputardengansudutkurangdari 180odariAkeB .makaakanmenujuarahC. 1. Vektor2SatuanTegak-lurus. i, j, k
Setiap vektorAdalamruang 3-dimensi bisadigambarkandgntitikpangkalpadatitikasal O darisistemkoordinat - A1, A2, A3 : komponen2darivektorAdalamarah x, y dan z - A1i, A2j danA3k : vektor2komponendariAdlmarah x, y, z • ResultandariA1i, A2j danA3k adalah : .A = A1i + A2j + A3k • Besarvektor A = | A | = • Khususnya, vektorposisiatauvektorjejari(radius vector) rdari O ketitik (x, y, z) : .r = xi + yj + zk • Besarvektorr : . r = | r | = 2. KOMPONEN-KOMPONEN VEKTOR
Bilapada tiap2titik (x,y,z) darisuatudaerah R dalamruang, dikaitkansebuahskalar(bilangan) φ(x,y,z) makaφdisebutfungsititikskalar (scalar point function),⇨ medanskalarContoh : 1. Temperaturdalamlaboratoriumkomputer. 2. φ(x,y,z) = x3y2+ y2z– xz2 • Jikapada tiap2titik (x,y,z) darisuatudaerah R dalamruang, dikaitkandengansebuahvektorV(x,y,z) makaVdisebutfungsititikvektor (vector point function) dandikatakansebuahmedanvektortelahdidefinisikandalam R. Contoh : 1. Kecepatanfluidaygbergerakdalampipa 2. V(x,y,z) = xy2 i + 3yz2 j – 2x2z2 k - Medan vektorstationerataukeadaansteady stateadalah.sebuahmedanvektorygtidakbergantungwaktu. 3. MEDAN SKALAR dan MEDAN VEKTOR
1. Diketahui vektor2berikut, r = 〔〕, s = 〔〕,t = 〔〕Bila . 3r- 2s = -t, hitunglahnilai x dan y ? 2. Diberikanbeberapavektor, P = 〔〕, Q = 〔〕, R = 〔〕 dan .S = 〔〕.Tentukan nilai x dany,bilaPQ = RSdanbilaPQ = SR 3. KoordinattitikA( 2,-5) danvektorAB = 3i – 4j , hitunglah.koordinattitikB ? 4. Diberikanbeberapavektor, K= i - 2j + 2k, L= 2i - 4j - 4k .danM= 3i - 2j + 6k. Tentukanbesar : a. | K|, |L|, | M| .b. | K - L + M | c. 3K –L +2M 5. Diketahuimedanskalarygdidefinisikanφ(x,y,z)= 3x2y – xy3. + 5z2Tentukanφpadatitik-titik : 4. Contohsoal
a. (0,0,0) b. (1, 2, -2) c. (1, 1, -2) d. (-1, -2, -3) ? Contohsoal – lanjutan
1. 3r – 2s = - t .〔〕- 〔〕 = 〔〕.3x – 6 = -3 3y - 4 = 2 . 3x = -3 + 6 3y = 4 + 2 . x = 1 y = 2 2. PQ = RSPQ = SR PQ = q – p = 〔〕 = 〔〕SR = 〔〕.RS = s – r = 〔〕. 〔〕= 〔〕〔〕= 〔〕.4 = 2 - x-12 = y - 1 4 = x - 2 - 12 = y - 1 . x = - 2 y = -11 x = 6 y = -13 Jawabancontohsoal
3. AB = b – a = 〔 〕= ⇨ 3i -4j = 〔〕 = 〔〕 = 〔〕 3 = x-2 - 4 = y + 5 . x = 5 y = - 9 .Jadikoordinattitik B adalah B(5, -9) 4a. | K | = | i – 2j + 2k | = = = 3 .| L| = | 2i – 4j - 4k | = = = 6 .| M| = | 3i – 2j + 6k | = = = 7 4b. K – L + M = (i - 2j + 2k) – (2i - 4j - 4k) + (3i – 2j +6k) = 2i + 12k . | K– L + M | = = = 2 4c. 3K – L + 2M = (3i – 6j + 6k) – (2i – 4j – 4k) + (6i – 4j + 12k) = .7i – 6j + 22k Jawabancontohsoal– lanjutan
5. φ(x,y,z) = 3x2y – xy3 + 5z2 φ(0,0,0) = 0 φ(1, 2, -2) = 3(1)2(2) – (1)(2)3 + 5(-2)2 = 6 - 8 + 20 = 18 φ(1, 1, -2) = 3(1)2(1) – (1)(1)3 + 5(-2)2 = 3 – 1 + 20 = 22 φ(-1, -2, -3) = 3(-1)2(-2) - (-1)(-2)3 + 5(-3)2 = - 6 – 8 + 45 = . = 31 Jawabancontohsoal – lanjutan
1. Diketahuibeberapakoordinat vektor2 : .Apada (4,3), Bpada( 2,-8), C(x,3) danD(3,y). Tentukan.nilai x dan y bila : a. AB = CD b. AB = DC ? 2. KoordinatvektorK(3,-5, 4) danvektorKL = 2i – 3j + 5k .Hitunglahkoordinat L ? 3. Diberikanbeberapavektor : R = 2i – 2j + k, S = 4i – 4j + 2k .dan T = 6i -2j + 3k. Tentukan : a. | R | + | S| + | T| . b. | R+ S + T | c. | 3R - 2S - T | 4. Tentukansebuahvektorsatuanygsejajarresultandarivek- . tor-vektorA = 5i + 4j + 2k danB = 3i + 2j + k ? 5. Sebuahbeban 50 kg digantungkanpadapertengahansebuah.talisepertipadagambar di bawah.Tentukantegangan T pada.tali ? 5. SoalLatihan/PR
Pendahuluan • Padavektorterdapatduaperkalian, perkalianskalardan per- kalian vektor • Perkalianskalarduavektordinamakanhasil-kali titik(skalar) • Perkalianvektorduavektordisebuthasil-kali silang (vektor) • Hukum-hukumygberlakupadakeduaperkalianitu ; hasil-kali titikdanhasil-kali silang BAB 3. HASIL-KALI TITIK DANHASIL-KALI SILANG
PerkalianSkalarduabuahvektordisebutjugahasil-kali titikataudot product. • Hasil-kali titik (skalar) duabuahvektor, AdanB, ygdinyatakanolehA · B didefinisikansebagaihasil-kali antarabesarnyavektor2AdanBsertacosinusθantarakeduanya : .A · B = | A | | B | cosθdimana 0 ⩽ θ⩽ 𝜋 • Bila diketahuiA= 〔〕B = 〔〕maka, A · B = (x1 x2) + (y1 y2) + (z1z2), dimana| A |=dan | B |= • BilaA · B = 0 makaA ┴ BJadihasil-kali skalarduavektoradalahsuatubilangan(skalar) 1. Hasil-kali Titik (Skalar)
4. Sifat-sifatperkalianskalarduavektoratauhukum-hukumpadahasil-kali titik : 1. A · B = B · AHukumKomutatif 2. A · (B + C) = A · B + A · CHukumDistributif 3. m (A · B) = (mA) · B = A · (mB) = (A ·B)m 4. i · i = j · j = k · k = 1 . i · j = j · k = k · i = 0 5. A · A = | A |2 6. Bila : A = A1i + A2j + A3k danB = B1i + B2j + B3k, maka.A · B = A1B1 + A2B2 + A3B3.A · A = | A |2 = A12 + A22 + A32.B · B = | B |2 = B12 + B22 + B32 Hasil-kali Titik (Skalar) – lanjutan
Bila diketahuiA, Bdan < A · B = α, maka.cosα = = 8. Proyeksi orthogonal suatuvektorpadavektor lain .BilaCadalahproyeksiApadaB, maka a. Proyeksiskalar orthogonal (panjangproyeksi) vektor ApadaBadalah : C = hasilnyaskalar(bilangan) . b. Proyeksivektor orthogonal ApadaBadalah : .C = hasilnyavektor. 7. Besarsudutantaraduavektor
1). Hasil-kali silang (vektor) dariduavektorAdanBadalah.sebuahvektorC = A x B. BesarA x Bdidefinisikansebagai.hasil-kali antarabesarnyaAdanBserta sinus sudurθ anta- .rakeduanya. ArahvektorC = A x Btegakluruspadabidang.ygmemuatAdanBsedemikianrupasehinggaA, BdanC.membentuksistemtangankanan. A x B = | A | | B | sin θu , dimana 0 ⩽θ ⩽ 𝜋 dan.- uadalahvektorsatuanygmenunjukkanarahdariA x B . - bilaA = BatauAsejajarBmaka sin θ = 0 dandidefinisi- .kanA x B = 0 2. Hasil-kali Silang (Vektor) – cross product
a. A x B = - B x AhukumKomutatif. b. A x (B + C) = A x B + A x ChukumDistributif. c. m(A x B) = (mA) x B = A x ( mB) = (A x B)m . d. i x i = j x j = k x k = 0 . i x j = k . j x k = i . k x i = j . e. BilaA = A1i + A2j + A3k danB = B1i + B2j + B3k, maka .A x B = 〔〕 f. BesarA x B = luasjajarangenjangdengansisi A, B g. BilaA x B = 0, AdanBbukan vektor2nol maka AdanBsejajar. 2). Hukum-hukumygberlakupadahasil-kali silang
1. a. i · i = d. j · k = . b. i · j = e. j · (2i – 2j – 2k) = . c. i . k = f. (2i – j) · (2i – k) = 2. BiladiketahuivektorP = 2i – 2j – k danQ = i - 4j + 8k, .makatentukan : a. | P | c. P · Q. b. | Q | d. sudutθ. 3. Bila | A |= 12 , | B |= 8 dansudutantaravektorAdanB.adalah 60o. Tentukan | A – B | ? 4. BilasudutantaravektorK = i + j + a k danL = i - j . + a k, adalah 60oTentukanbesar a ? ContohSoalHasil-kali Titik
1a. i · i = | i | | i | cos 0o = (1) (1) (1) = 1 . b. i · j = | i | | j | cos 90o = (1)(1)(0) = 0 . c. i · j = | i | | k | cos 90o = (1)(1)(0) = 0 . d. j · (2i – 2j – 2k) = 2j · i – 2j · j – 2j · k = 0 – 2 - 0 = 2 . e. (2i – j) · (2i + k ) = 2i · (2i + k) – j · (2i + k) = 4i · i + 2i · k . – 2j · i – j · k = 4 + 0 – 0 – 0 = 4 2a. | P | = = 3 b. | Q | = = 8c. P · Q = (2)(1) + (-2)(-4) + (1)(8) = 2 + 8 + 8 = 18 d. cosθ = = = ⇨ θ= arc cos 0,667 = 48,50 3. | A – B |2 = | A |2+ | B |2 – 2 | A | | B | cos 600 = 122 + 82 – 2 (12)(8)(0,5) = 112 ⇨| A – B | =4 JawabancontohSoalHasil-kali Titik
4. K . L = | K | | L | cosθ⇨ cosθ = = cos 600 = = = -2 + 2a2 = 12 + 2 + a2 a2 = 5 a = = 2,2360 Jawabancontohsoal
1a. i · (3i – 2j – k) = . b. (2i – j) · (i + 2j) . c. k · k = . d. i . [ (i – 3j – k) . (3i – 2j + 3k)] = 2. Bila P = P1i + P2j + P3k dan Q = Q1i + Q2j + Q3k makabukti- .kan P . Q = P1 Q1 + P2 Q2 + P3 Q3 ? 3. Tentukansudutantara vektor2 K = 2i + 2j – k dan. L = 6i – 3j - 2k ? 4. Tentukanproyeksivektor A = i – 2j + k dan B = -4i – 4j +7k SOAL LATIHAN/PR
Tentukanhasilnya : a. i x j = . b. j x k = e. j x j = h. i x k = . c. k x i = f. k x j = i. i x i = . d. 2i x 3k = g. (2i) x (-3k) j. 2j x i – 3k = • Bila P = 2i – 3j – k dan Q = i + 4j - 2k, makatentukan a. P x Q = b. Q x P = c. (P + Q) x (P – Q) = • Jika K = 3i – 2j + 2k, L = 2i + j – k dan M = i – 2j + 2k carilah : a. (A x B) x C . b. A x (B x C) ? ContohsoalHasil-kali Silang