310 likes | 595 Views
Stereometrie. Vzdálenost bodu od přímky. VY_32_INOVACE_M3r0113. Mgr. Jakub Němec. Vzdálenost bodu od přímky v prostoru. Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu převést na určování vzdálenosti dvou bodů.
E N D
Stereometrie Vzdálenost bodu od přímky VY_32_INOVACE_M3r0113 Mgr. Jakub Němec
Vzdálenost bodu od přímky v prostoru • Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu převést na určování vzdálenosti dvou bodů. • Vzdálenost bodu od přímky jsme řešili v planimetrii a víme, že tuto vzdálenost určuje daný bod a bod přímky, který nazýváme patou kolmice. Tato kolmice je kolmá k přímce a zároveň prochází zadaným bodem. • V prostoru je před řešením úlohy nutné určit si rovinu, ve které budeme vzdálenost hledat. Rovina bude určena bodem a přímkou, což je dostačující pro její přesné určení. • Nalezením této roviny získáme řez prostorového úvaru, jehož pomocí je příklad zadán. Jak víme, řez je dvourozměrný geometrický útvar, takže při dalších krocích postupujeme obdobně jako v planimetrii.
V krychli ABCDEFGH s hranou |AB|= 4 cm určete vzdálenost bodu A od přímky GH.
Zde je znázorněn řez krychle rovinou AGH. Z vlastností krychle vyplývá, že daný řez je obdélník.
Strana AB měří samozřejmě stejně jako hrana krychle 4 cm. Strana AH je naše hledaná vzdálenost, poněvadž spojnice bodů AH je kolmá k přímce GH. Bod H je tak patou kolmice přímky, která je určená bodem A.
Z vlastností krychle vyplývá, že úsečka |AH| je úhlopříčka stěny, tedy úhlopříčka čtverce. Výpočet je tedy zřejmý – využijeme Pythagorovu větu.
----------------------------------------------------- Obecně: Zde je uveden postup výpočtu. Vzdálenost bodu A od přímky GH je tedy přibližně v = 5,66 cm. Pro urychlení následujících výpočtů si pamatujte vztah pro výpočet úhlopříčky čtverce.
V krychli ABCDEFGH s hranou |AB|= 7 cm určete vzdálenost bodu A od přímky FH.
Zde je znázorněn řez krychle rovinou AFH. Z vlastností krychle vyplývá, že strany řezu jsou úhlopříčky stěn krychle, tedy úhlopříčky čtverců. Náš řez AFH je tedy rovnostranný trojúhelník.
Strany AF, AH a FH měří stejně, tedy cm. Z vlastností rovnostranného trojúhelníku vyplývá, že kolmice z bodu A k protější straně (je to tedy výška trojúhelníku) protíná stranu FH přesně v jejím středu S. Bod S je tak patou kolmice k přímce FH, která je určená bodem A. Úsečka |AS| je naše hledaná vzdálenost. K výpočtu opět využijeme Pythagorovy věty.
Uvedené řešení je založeno na úpravě obecných rozměrů krychle. Získáme tak obecný vztah pro výpočet naší situace. Poté stačí pouze dosadit rozměr do získaného vztahu a příklad je vyřešen.
Při dosazení rozměrů do rovince je nutné nezaokrouhlovat, popř. zaokrouhlit alespoň na tisíciny. V opačném případě vyjde vzdálenost nepřesně.
V kvádru ABCDEFGH s rozměry |AB|= 7 cm, |BC|= 4 cm a |AE|= 3 cm urči vzdálenost bodu A od přímky BH.
Zde je znázorněn řez kvádru rovinou ABH. Z vlastností kvádru vyplývá, že daný řez je obdélník.
Kolmice k přímce BH, která zároveň prochází bodem A, nám určí patu kolmice P. Nyní máme tři způsoby, jak vypočítat vzdálenost AP: -na základě podobnosti trojúhelníků - na základě goniometrických funkcí - na základě obsahu trojúhelníku.
Pokud chceme využít podobnosti trojúhelníků, musíme nejdříve podobné trojúhelníky najít. V našem případě jsou to trojúhelníky APB (pravý úhel u bodu P) a HAB (pravý úhel u bodu A). K výpočtu potřebujeme znát znát úhlopříčku boční stěny BG a tělesovou úhlopříčku BH.
Pokud využijeme poměru odpovídajících stran, můžeme bez složitějších výpočtů určit vzdálenost AP. V našem kvádru zřejmě platí (|AH|=|BG|) .
Při výpočtu pomocí goniometrických funkcí využijeme funkce tangens a sinus.
Musíme ovšem znát buď stranu AH nebo stranu BH. Využijeme výpočet z předchozího postupu. Bez zaokrouhlení nám vyjde výsledek přesně jako v prvním případě, tedy asi 4,07 cm.
Poslední možností je využití obsahu trojúhelníku. Obsah trojúhelníku ABH lze vypočíst pomocí stran AB a AH nebo pomocí strany BH a její výšky AP. Pro výpočet využijeme opět rozměry, které jsme již zjistili v prvním způsobu řešení. Sami můžete porovnat výsledky. Pokud nedojde k zaokrouhlení, vedou všechny tři postupy k témuž výsledku. Záleží pouze na vás, který z nich budete preferovat. cm
Úkol závěrem • 1) V krychli ABCDEFGH s hranou |AB|= 5 cm urči vzdálenost bodu F od přímky BS, kde bod S je střed horní podstavy krychle. • 2) V kvádru ABCDEFGH s rozměry |AB|= 5 cm, |BC|= 5 cm a |AE|= 9 cm urči vzdálenost bodu H od přímky AC.
Zdroje • Literatura: • POMYKALOVÁ, Eva. Matematika pro gymnázia - Stereometrie. 1. vydání. Praha: Prometheus, 1995, 223 s. ISBN 80-7196-004-7. • Obrázky byly vytvořeny v programu Malování.