1 / 8

MATEMATIKA 2

DIFERENCIALNE ENAČBE. MODELIRANJE. FIZIKALNI PRIMER: R ADIOAKTIVNI RAZ PAD.

moira
Download Presentation

MATEMATIKA 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DIFERENCIALNE ENAČBE MODELIRANJE FIZIKALNI PRIMER: RADIOAKTIVNI RAZPAD Hitrostrazpadanjaradioaktivnesnovi je sorazmerna s količino snovi (reakcija 1. reda). Če imamo na začetku neko količino snovi (npr. 5gizotopa14C), kaj lahko povemo o količini snovi čez nekaj časa (npr. čez koliko časa bo ostalo le 3g 14C)? y=y(t)količina snovi v trenutku t y’=-kykje sorazmernostnifaktor med količinosnovi in hitrostjorazpadanja(npr. za 14C je k=3.83 10-12 s-1) y(0)=C, torej je Cravno začetna količina opazovanesnovi Diferencialna enačba skupaj z začetnim stanjem v celoti določa evolucijo sistema. Hitrostrazpadanjapogostopodamo z razpolovnodoboT:zveza s k je kT=ln2 Razpolovnadoba14Cje (0.6931/3.83) 1012 s ≈ 5730 let. 1 MATEMATIKA 2

  2. DIFERENCIALNE ENAČBE MODELIRANJE kozmični žarki stopnja radioaktivnosti 0 let 5730 let 11460 let 17190 let starost DATIRANJE S 14C Rastlineabsorbirajo CO2 vbiosfero. Razmerje med 12C in14C v živih bitjih je enako, kot v atmosferi. Ogljikov izotop 14C nastaja v višjih plasteh atmosfere, ko pod vplivom kozmičnih žarkov dva neutrona nadomestita dva protona v 14N. Nastali 14C se veže s kisikom v 14CO2. Razmerje med 14CO2 in 12CO2 v atmosferi je dokaj stabilno. Ko ostanki živih bitij niso več v stiku z atmosfero se razmerje med 12C in14C zaradi radioaktivnega razpada poveča v prid prvega. Starost ostankov ocenimo na podlagi primerjave stopenj radioaktivnosti. 2 MATEMATIKA 2

  3. DIFERENCIALNE ENAČBE PROBLEM ZAČETNE VREDNOSTI Pridiferencialnihenačbahobravnavamodvatipanalog: • iskanje splošne rešitve splošna rešitev enačba • začetni problem iščemo rešitev enačbe, ki ima v nekaterih točkah predpisane funkcijske vrednosti ali morda vrednosti odvodov začetni problem rešitev 3 MATEMATIKA 2

  4. DIFERENCIALNE ENAČBE ENAČBE Z LOČLJIVIMI SPREMENLJIVKAMI DIFERENCIALNE ENAČBE Z LOČLJIVIMI SPREMENLJIVKAMI V diferencialni enačbi 1. reda lahko ločimo spremenljivki, če jo lahko zapišemo v obliki nista enačbi z ločljivimi spremenljivkami 4 MATEMATIKA 2

  5. DIFERENCIALNE ENAČBE ENAČBE Z LOČLJIVIMI SPREMENLJIVKAMI Reševanje enačb z ločljivimi spremenljivkami U(y)primitivnafunkcijazau(y) V(x)primitivnafunkcijazav(x) implicitna oblika splošne rešitve 5 MATEMATIKA 2

  6. DIFERENCIALNE ENAČBE ENAČBE Z LOČLJIVIMI SPREMENLJIVKAMI Pogosto srečamo enačbe, pri katerih je odvod sorazmeren funkcijski vrednosti, vendar se sorazmernostni faktor odvisen od x. spremenljivk se ne da ločiti! 6 MATEMATIKA 2

  7. DIFERENCIALNE ENAČBE ENAČBE Z LOČLJIVIMI SPREMENLJIVKAMI Začetni problem pri enačbah z ločljivimi spremenljivkami 7 MATEMATIKA 2

  8. DIFERENCIALNE ENAČBE POVZETEK • Diferencialna enačba je funkcijska enačba, v kateri nastopajo odvodi iskane funkcije. • Rešitev DE je funkcija y=y(x),kizavsexustrezaenačbi. Število prostih parametrov, • od katerih je odvisna rešitev je enako redu enačbe. • Geometrično je rešitev DE vsaka krivulja, ki je tangentna na polje smeri. • Začetni problem je iskanje rešitve DE, ki ustreza nekim začetnim pogojem. • DE z ločljivimi spremenljivkami rešimo tako, da ločimo spremenljivki in potem integriramo vsako stran enačbe posebej. 8 MATEMATIKA 2

More Related