1 / 24

TRIGONOMETRI

TRIGONOMETRI. IDIKATOR: MEMBUKTIKAN KESAMAAN TRIGONOMETRI MENYEDERHANAKAN PERSAMAAN TRIGONOMETRI SERTA MENCARI PENYELESAIAN PERSAMAAN DAN PERTIDAKSAMAAN. BY : ULIYA FATIMAH (09320008). TRIGONOMETRI. MATERI: Perbandingan Trigonometri dan Teorema Pythagoras

waite
Download Presentation

TRIGONOMETRI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TRIGONOMETRI IDIKATOR: MEMBUKTIKAN KESAMAAN TRIGONOMETRI MENYEDERHANAKAN PERSAMAAN TRIGONOMETRI SERTA MENCARI PENYELESAIAN PERSAMAAN DAN PERTIDAKSAMAAN BY : ULIYA FATIMAH (09320008)

  2. TRIGONOMETRI MATERI: Perbandingan TrigonometridanTeorema Pythagoras Nilai Perbandingan Trigonometri untuk Sudut Istimewa Perbandingan Trigonometri dalam Kuadran Identitastrigonometri

  3. TRIGONOMETRI Perbandingan Trigonometri& Teorema Pythagoras Ketahuilah , pada Pythagoras hanya berlaku pada segi tiga siku-siku dan sisimiring atau disebut dengan hipotenusa sama dengan jumlah padakeduasisisiku-sikusegitiga.

  4. TRIGONOMETRI AC2 = AB2+ BC2 C Contoh: Hitunglah panjang sisi x yang belum diketahui, pada segitiga siku-siku di samping ini (panjang segitiga dalam cm) HIPOTENUSA X B A jawab

  5. TRIGONOMETRI Jawab: C AC2 = AB2 + BC2 X2 = 122 + 52 = 144 + 25 = 169 X = 13 HIPOTENUSA X 15 B A 5

  6. TRIGONOMETRI C Sin α = Cos α = HIPOTENUSA Tan α = B A

  7. TRIGONOMETRI C cosec α = HIPOTENUSA Sec α = Cotan α = B A

  8. TRIGONOMETRI contoh: 1. Di titik R (8, 15) membentuksudut α, tentukan sec α ? Sec α = r2= x2 + y2 = 82 + 152 = 64 + 225 r y = 15 = α r = 17 x = 8 Sec α = 17 /8

  9. TRIGONOMETRI 2. Nilai Perbandingan Trigonometri untuk Sudut Istimewa

  10. TRIGONOMETRI Contoh: Buktikan sin245 + cos245 = 1 jawab: sin245 + cos245 = 1 (½ )2 + (½)2 = 1 ¼ 2 + ¼ 2 = 1 2/4 + 2/4 = 1 4/4=1 Terbukti, sin245 + cos245 = 1

  11. TRIGONOMETRI 3 PERBANDINGAN TRIGONOMETRI DALAM KUADRAN

  12. TRIGONOM ETRI

  13. TRIGONOMETRI sin α = = = = + Kuadran II Kuadran I r= + r= + y = + y = + x = + α α x = - y = - y = - r=+ r = + Kuadran IV Kuadran III

  14. TRIGONOM ETRI Contoh: • Cos α = -4/5 dan tan α positif, berapa nilai sin αsin .... sin α = = x = -4 α y2 = r2 - x2 y2 = 52 – (-4)2 y2 = 25 – 16 = y = -3 y = ? r = 5 Jadi, Sin α =

  15. TRIGONOM ETRI Contoh: • Cos α = -4/5 dan tan α positif, berapa nilai sin αsin .... sin α = = x = -4 y2 = r2 - x2 y2 = 52 – (-4)2 y2 = 25 – 16 = y = -3 α y = ? r = 5 Jadi, Sin α =

  16. TRIGONOMETRI 4 IDENTITAS TRIGONOMETRI

  17. TRIGONOMETRI Sin α = = cos α = = tan α = = cosec α = = Sec α = = cotann α = =

  18. TRIGONOM ETRI Hubungan antar pembanding a. Cosec α = b. Sec α = c. Cotan α =

  19. TRIGONOMETRI a. Cosec α = Cosec α = Cosec α = b. Sec α = Sec α = Sec α = c. Cotan α = Cotan α = Cotan α =

  20. TRIGONOMETRI 2. IdentitasdariHubunganTeorema Pythagoras (x2 + y2 = r2 ) a) x2 + y2 = r2(sama-sama dibagi r2) x2 / r2 + y2 / r2 = r2 / r2 x2 / r2 + y2 / r2 = 1 cos2 α + sin2 α = 1

  21. TRIGONOMETRI 2. IdentitasdariHubunganTeorema Pythagoras (x2 + y2 = r2 ) b) x2 + y2 = r2(sama-sama dibagi y2) x2 / y2 + y2 / y2 = y2 / y2 x2 / y2 + y2 / y2 = 1 cotan2α+1= cosec2 α

  22. TRIGONOMETRI Contoh 1 : jika 2 sin2 x + 3 cos x = 0 dan 0° < x < 180° maka nilaix adalah............. Jawab : 2 sin2 x + 3 cos x = 0 2(1- cos2 x) + 3 cos x = 0 2cos2 x - - 3 cos x - 2 = 0 (2 cos x + 1 ) ( cos x – 2 ) = 0 Cos x = - ½ cos x = 2 (tidak memenuhi)

  23. TRIGONOMETRI Contoh 2: Dari pertidaksamaan berikut sinx . sin2 x + cos2x < ½ berapakah nilai dari x Jawab: sinx . sin2 x + cos2x < ½ sin x .(sin2 x + cos2x) < ½ sin x . 1 < ½ sin x < ½ x< 30°

  24. TERIMAKASIH SEMOGA YANG KITA PELAJARI DAPAT BERMANFAAT AMIIIIIIN..

More Related