1 / 8

Bab III TURUNAN FUNGSI

Bab III TURUNAN FUNGSI. IR. Tony hartono bagio , mt , mm. III. TURUNAN FUNGSI. 3.1 Pengertian Turunan Fungsi 3.2 Turunan Fungsi Konstan dan Fungsi Pangkat 3.3 Sifat-sifat Turunan 3.4 Aturan Rantai 3.5 Turunan Fungsi Invers 3.6 Turunan Fungsi Implisit 3.7 Turunan Tingkat Tinggi

Download Presentation

Bab III TURUNAN FUNGSI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bab IIITURUNAN FUNGSI IR. Tony hartonobagio, mt, mm Prepared by : Tony Hartono Bagio

  2. III. TURUNAN FUNGSI 3.1 PengertianTurunanFungsi 3.2 TurunanFungsiKonstandanFungsiPangkat 3.3 Sifat-sifatTurunan 3.4 Aturan Rantai 3.5 TurunanFungsiInvers 3.6 TurunanFungsiImplisit 3.7 Turunan Tingkat Tinggi 3.8 TurunanFungsiAljabardanTransenden 3.9 TurunanFungsi Parameter Prepared by : Tony Hartono Bagio

  3. 3.5 TurunanFungsiInvers Prepared by : Tony Hartono Bagio

  4. 3.6 TurunanFungsiImplisit Prepared by : Tony Hartono Bagio Fungsíimplisitsecaraumumdapatditulissebagai f(x, y) = 0 dengan y sebagaifungsídalam x. Contohfungsiimplisit: • 1) y – 2x3 – 8 = 0 • 2) 2x3y – 7y – x2 + 1 = 0

  5. 3.6 TurunanFungsiImplisit Prepared by : Tony Hartono Bagio Tentukandarifungsí : y – 2x3 – 8 = 0 Penyelesaian: Tentukandarifungsí : 2x3y – 7y – x2 + 1 = 0 Penyelesaian:

  6. 3.7 Turunan Tingkat Tinggi Prepared by : Tony Hartono Bagio Jikafungsiditurunkanmakaturunannya, yaituf ’ jugaberupafungsi, dandimungkinkanf ’ jugamempunyaiturunantersendiri yang dinyatakanoleh(f ’)’ = f ’’. Fungsi yang f ’’ baruinidisebutturunankeduadarifkarenadiamerupakanturunandariturunan f . Dengannotasi Leibniz kitatuliskanturunankeduadari y = f(x) sebagai

  7. 3.7 Turunan Tingkat Tinggi Prepared by : Tony Hartono Bagio Contoh 7 Jikaf(x) = 3x4 + 7x – 8, tentukan f ’’(x).

  8. 3.7 Turunan Tingkat Tinggi Prepared by : Tony Hartono Bagio Contoh 8 Jikaf(x) = (3x5 + 2x)(4x + 7), tentukan f ’’(x).

More Related