1 / 13

Bab III TURUNAN FUNGSI

Bab III TURUNAN FUNGSI. IR. Tony hartono bagio , mt , mm. III. TURUNAN FUNGSI. 3.1 Pengertian Turunan Fungsi 3.2 Turunan Fungsi Konstan dan Fungsi Pangkat 3.3 Sifat-sifat Turunan 3.4 Aturan Rantai 3.5 Turunan Fungsi Invers 3.6 Turunan Fungsi Implisit 3.7 Turunan Tingkat Tinggi

Download Presentation

Bab III TURUNAN FUNGSI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bab IIITURUNAN FUNGSI IR. Tony hartonobagio, mt, mm Prepared by : Tony Hartono Bagio

  2. III. TURUNAN FUNGSI 3.1 PengertianTurunanFungsi 3.2 TurunanFungsiKonstandanFungsiPangkat 3.3 Sifat-sifatTurunan 3.4 Aturan Rantai 3.5 TurunanFungsiInvers 3.6 TurunanFungsiImplisit 3.7 Turunan Tingkat Tinggi 3.8 TurunanFungsiAljabardanTransenden 3.9 TurunanFungsi Parameter Prepared by : Tony Hartono Bagio

  3. 3.1 PengertianTurunanFungsi Prepared by : Tony Hartono Bagio

  4. 3.1 PengertianTurunanFungsi Prepared by : Tony Hartono Bagio

  5. 3.1 PengertianTurunanFungsi Prepared by : Tony Hartono Bagio

  6. 3.2 TurunanFungsiKonstandanFungsiPangkat Prepared by : Tony Hartono Bagio

  7. 3.2 TurunanFungsiKonstandanFungsiPangkat Prepared by : Tony Hartono Bagio

  8. 3.3 Sifat-sifatTurunan Prepared by : Tony Hartono Bagio Jikaksuatukonstanta, f dan g fungsi-fungsi yang terdiferensialkan, udanvfungsifungsidalamxsehinggau =f(x)danv =g(x)makaberlaku: 1. Jikay = kumaka y’ = k(u’ ) 2. Jikay = u+vmaka y’ = u’ + v’ 3. Jikay = u–v maka y’ = u’ – v’ 4. Jikay = u v maka y’ = u’ v + u v’ 5. Jikamaka

  9. 3.3 Sifat-sifatTurunan Prepared by : Tony Hartono Bagio

  10. 3.3 Sifat-sifatTurunan Prepared by : Tony Hartono Bagio

  11. 3.4 Aturan Rantai Prepared by : Tony Hartono Bagio Untukmenentukanturunan y = (3x4 + 7x – 8)9 dengancaramengalikanbersamakesembilanfaktor (3x4 + 7x – 8) kemudianmencariturunanpolinomberderajat 36 tentulahsangatmelelahkan. Cara yang mudahuntukmenentukanturunan y = (3x4 + 7x – 8)9 adalah dengan menggunakan aturan rantai.

  12. 3.4 Aturan Rantai Prepared by : Tony Hartono Bagio Fungsíkomposisidapatdiperluasmenjadikomposisi 3 fungsi, 4 fungsidanseterusnya. Jikay = f(u) u = g(v) v = h(x) yakni y = (f o g o h)(x) maka

  13. 3.4 Aturan Rantai Prepared by : Tony Hartono Bagio

More Related