1.03k likes | 1.38k Views
MATRIKS. Konsep Matriks. MATRIX. Concept of Matrix. Macam-macam Matriks. Kompetensi Dasar : Mendeskripsikan macam-macam matriks Indikator : Matriks ditentukan unsur dan notasinya Matriks dibedakan menurut jenis dan relasinya. Kinds of Matrix. Basic Competences :
E N D
MATRIKS Konsep Matriks
MATRIX Concept of Matrix
Macam-macam Matriks Kompetensi Dasar : Mendeskripsikan macam-macam matriks Indikator : • Matriks ditentukan unsur dan notasinya • Matriks dibedakan menurut jenis dan relasinya Matriks
Kinds of Matrix Basic Competences : Describing the kinds of matrix Indicators : • Matrix is determined by its elements and notations • Matriks matrix is distinguished by its kinds and relations Matriks
Macam – macam Matriks Pengertian Matriks • Matriks adalah susunan bilangan-bilangan yang terdiri atas baris-baris dan kolom-kolom. • Masing-masing bilangan dalam matriks disebut entri atau elemen. Ordo (ukuran) matriks adalah jumlah baris kali jumlah kolom. a11 a12…….a1j ……a1n a21 a22 ……a2j…….a2n : : : : ai1 ai2 ……aij…….. ain : : : : am1 am2……amj……. amn baris A = Notasi: Matriks: A = [aij] Elemen: (A)ij = aij Ordo A: m x n kolom Matriks
Kinds of Matrix Definition of Matrix • Matrix is the arrangement of numbers which consists of rows and columns. • Each of the numbers in matrix is called as entry or element. Order (size) of matrix is the value of the row number multiplied by the number of column. a11 a12…….a1j ……a1n a21 a22 ……a2j…….a2n : : : : ai1 ai2 ……aij…….. ain : : : : am1 am2……amj……. amn rows A = Notation: Matrix: A = [aij] Element: (A)ij = aij Order A: m x n column Matriks
2 5 1 -8 25 -2 0 14 8 Macam-macam Matriks 1. Matriks Baris Matriks baris adalah matriks yang hanya terdiri dari satu baris. Matriks
2 5 1 -8 25 -2 0 14 8 Kinds of Matrix 1. Row matrix Row matrix is a matrix which consists of one row. Matriks
2 -7 9 2 1 Macam-macam Matriks 2. Matriks Kolom Matriks Kolom adalah matriks yang hanya terdiri dari satu kolom Matriks
2 -7 9 2 1 Kinds of Matrix 2. Column matrix Column matrix is a matrix which consists of one column. Matriks
Macam – macam Matriks 3. Matriks Persegi Matriks persegi (bujur sangkar) adalah matriks yang jumlah baris dan jumlah kolom sama. 1 2 4 2 2 2 3 3 3 Trace(A) = 1 + 2 + 3 diagonal utama Trace dari matriks adalah jumlahan elemen-elemen diagonal utama Matriks
Kinds of Matrix 3. Square matrix Square matrix is a matrix which has the same numbers of rows and columns. 1 2 4 2 2 2 3 3 3 Trace(A) = 1 + 2 + 3 Main diagonal Trace from matrix is the total numbers from the main diagonal elements. Matriks
Macam- macam Matriks 4. Matriks Nol Matriks nol adalah matriks yang semua elemennya nol 0 0 0 0 0 0 0 Matriks identitas adalah matriks persegi yang elemen diagonal utamanya 1 dan elemen lainnya 0 I3 I4 I2 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 Matriks
Kinds of Matrix 4. Zero matrix zero matrix is a matrix which all of its elements are zero. 0 0 0 0 0 0 0 Matrix identity is a square matrix which its main diagonal element is 1 and the other element is 0. I3 I4 I2 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 Matriks
0 -1 1 0 0 1 -1 0 A = AT= ½√2 -½√2 ½√2 ½√2 ½√2 ½√2 -½√2 ½√2 B = BT= Macam-macam Matriks 5. Matriks ortogonal Matriks A orthogonal jika dan hanya jika AT = A –1 = A-1 = B-1 (A-1)T = (AT)-1 A-1 AT Jika A adalah matriks orthogonal, maka(A-1)T = (AT)-1 Matriks
0 -1 1 0 0 1 -1 0 A = AT= ½√2 -½√2 ½√2 ½√2 ½√2 ½√2 -½√2 ½√2 B = BT= Kinds of Matrix 5. Orthogonal Matrix Matrix A is orthogonal if and only if AT = A –1 = A-1 = B-1 (A-1)T = (AT)-1 A-1 AT If A is orthogonal matrix, so(A-1)T = (AT)-1 Matriks
4 2 6 7 5 3 -9 7 A = Macam – macam Matriks Definisi: Transpose matriks A adalah matriks AT, kolom-kolomnya adalah baris-baris dari A, baris-barisnya adalah kolom-kolom dari A. 4 5 2 3 6 -9 77 AT = A’ = • [AT]ij = [A]ji n x m Jika A adalah matriks m x n, maka matriks transpose AT berukuran ……….. Matriks
4 2 6 7 5 3 -9 7 A = Kinds of Matrix Definisi: Transpose matrix A is matrix AT, its columns are rows of A, its rows is columns of A. 4 5 2 3 6 -9 77 AT = A’ = • [AT]ij = [A]ji n x m if A is matrix m x n, so matrix transpose AT should be ……….. Matriks
1 2 4 2 1 3 1 2 4 2 1 3 A = B = 1 2 2 2 1 3 2 1 2 2 1 3 C = D = 1 2 4 2 2 2 x 2 4 2 2 2 E = F = ? ? ? ? ? ? ? ? ? • 2 2 • 5 6 • 9 0 7 H = G = Macam – macam Matriks Kesamaan dua matriks • Dua matriks sama jika ukuran sama dan setiap entri yang bersesuaian sama. A = B C ≠ D E = F jika x = 1 2 2 2 5 4 6 G = H 9 0 7 Matriks
1 2 4 2 1 3 1 2 4 2 1 3 A = B = 1 2 2 2 1 3 2 1 2 2 1 3 C = D = 1 2 4 2 2 2 x 2 4 2 2 2 E = F = ? ? ? ? ? ? ? ? ? • 2 2 • 5 6 • 9 0 7 H = G = Kind of Matrix Similarity of two matrixes • Two matrix are similar if its size is similar and each symmetrical entry is similar A = B C ≠ D E = F jika x = 1 2 2 2 5 4 6 G = H 9 0 7 Matriks
4 2 2 3 4 2 2 3 A = A’ = Macam-macam Matriks Matriks Simetri Matriks A disebut simetris jika dan hanya jika A = AT A simetri 1 2 3 4 2 5 7 0 37 8 2 4 0 2 9 A = = AT Matriks
4 2 2 3 4 2 2 3 A = A’ = Kinds of Matrix Symmetrical matrix Matrix A is called symmetric if and only if A = AT A symmetric 1 2 3 4 2 5 7 0 37 8 2 4 0 2 9 A = = AT Matriks
4 2 6 7 5 3 -9 7 Macam-macam Matriks Sifat-sifat transpose matriks • Transpose dari A transpose adalah A: • (AT )T = A (AT)T A = A AT Contoh: 4 5 2 3 6 -9 77 4 5 2 3 6 -9 77 Matriks
4 2 6 7 5 3 -9 7 Kinds of Matrix properties of transpose matrix • Transpose of A transpose is A: • (AT )T = A (AT)T A = A AT Example: 4 5 2 3 6 -9 77 4 5 2 3 6 -9 77 Matriks
T T T A A+B B = + • (A+B)T = • AT • BT + Macam-macam Matriks 2. (A+B)T = AT + BT Matriks
T T T A A+B B = + • (A+B)T = • AT • BT + Kinds of Matrix 2. (A+B)T = AT + BT Matriks
Macam-macam Matriks 3. (kA)T = k(A) T untuk skalar k T A kA T k • (kA)T = k(A)T Matriks
Kinds of Matrix 3. (kA)T = k(A) T for scalar k T A kA T k • (kA)T = k(A)T Matriks
T T T B AB A Macam-macam Matriks 4. (AB)T = BT AT = • (AB)T • = BTAT • AB Matriks
T T T B AB A Kinds of Matrix 4. (AB)T = BT AT = • (AB)T • = BTAT • AB Matriks
Macam-macam Matriks Soal : Isilah titik-titik di bawah ini • A simetri maka A + AT= …….. • ((AT)T)T = ……. • (ABC)T = ……. • ((k+a)A)T = …..... • (A + B + C)T = ………. • Kunci: • 2A • AT • CTBTAT • (k+a)AT • AT + BT + CT Matriks
Kind of Matrix Quiz : Fill in the blanks bellow • A symmetric then A + AT= …….. • ((AT)T)T = ……. • (ABC)T = ……. • ((k+a)A)T = …..... • (A + B + C)T = ………. • Answer keys: • 2A • AT • CTBTAT • (k+a)AT • AT + BT + CT Matriks
OPERASI MATRIKS Kompetesi Dasar Menyelesaikan Operasi Matriks Indikator • Dua matriks atau lebih ditentukan hasil penjumlahan atau pengurangannya • Dua matriks atau lebih ditentukan hasil kalinya Matriks
OPERATION OF MATRIX Basic competence Finishing operation matrix Indicator • Two or more matrixes is defined by the result of their addition or subtraction • Two or more matrixes is defined by the result of their multiplication Matriks
10 22 1 -1 2 6 7 5 A = B = 10+2 22+6 1+7 -1+5 12 28 8 4 A + B = = 10-2 22-6 1-7 -1-5 8 16 -6 -6 A - B = = OPERASI MATRIKS Penjumlahan dan pengurangan dua matriks Contoh : Matriks
10 22 1 -1 2 6 7 5 A = B = 10+2 22+6 1+7 -1+5 12 28 8 4 A + B = = 10-2 22-6 1-7 -1-5 8 16 -6 -6 A - B = = OPERATION OF MATRIX Addition and subtraction of two matixes Example: Matriks
OPERASI MATRIKS Apa syarat agar dua matriks dapat dijumlahkan? Jawab: Ordo dua matriks tersebut sama • A = [aij] dan B = [bij] berukuran sama, • A + B didefinisikan: (A + B)ij = (A)ij + (B)ij = aij + bij Matriks
OPERATION OF MATRIX What is the condition so that two matrixes can be added? Answer: The ordo of the two matrixes are the same • A = [aij] dan B = [bij] have the same size, • A + B is defined: (A + B)ij = (A)ij + (B)ij = aij + bij Matriks
1 4 -9 3 7 0 5 9 -13 7 3 1 -2 4 -5 9 -4 3 K = L = 25 30 5 35 10 15 5 6 1 7 2 3 C = D = ? ? ? ? ? ? C + D = ? ? ? ? ? ? ? ? ? K + L = OPERASI MATRIKS Jumlah dua matriks D + C = L + K = Apa kesimpulanmu? Apakah jumlahan matriks bersifat komutatif? Matriks
1 4 -9 3 7 0 5 9 -13 7 3 1 -2 4 -5 9 -4 3 K = L = 25 30 5 35 10 15 5 6 1 7 2 3 C = D = ? ? ? ? ? ? C + D = ? ? ? ? ? ? ? ? ? K + L = OPERATION OF MATRIX The quantity of two matrixes D + C = L + K = What is your conclusion? Is the addition of matrixes commutative? Matriks
-8 0 • 4 7 2 • -1 8 4 • 6 -1 2 • 9 9 8 • -2 16 8 • 7 2 • 5 2 6 • -1 8 4 D = • 7 2 • 5 2 6 C = C +D = E = 0 0 0 0 0 0 0 0 0 0 0 0 A = B = OPERASI MATRIKS • Soal: • C + D =… • C + E = … • A + B = … Feedback: Matriks
-8 0 • 4 7 2 • -1 8 4 • 6 -1 2 • 9 9 8 • -2 16 8 • 7 2 • 5 2 6 • -1 8 4 D = • 7 2 • 5 2 6 C = C +D = E = 0 0 0 0 0 0 0 0 0 0 0 0 A = B = OPERATION OF MATRIX • Exercise: • C + D =… • C + E = … • A + B = … Feedback: Matriks
5 6 1 7 2 3 A = OPERASI MATRIKS Hasil kali skalar dengan matriks 5x5 25 5x1 5 5x6 30 5A = = 5x5 35 5x3 15 5x2 10 Apa hubungan H dengan A? 250 300 50 350 100 150 H = 50 H = A • Diberikan matriks A = [aij] dan skalar c, perkalian skalar cA mempunyai entri-entri sebagai berikut: • (cA)ij = c.(A)ij = caij • Catatan: Pada himpunan Mmxn, perkalian matriks dengan skalar bersifat tertutup (menghasilkan matriks dengan ordo yang sama) Matriks
5 6 1 7 2 3 A = OPERATION OF MATRIX The multiplication result of scalar matrix 5x5 25 5x1 5 5x6 30 5A = = 5x5 35 5x3 15 5x2 10 What is the relation between H and A? 250 300 50 350 100 150 H = 50 H = A • Given matrix A = [aij] aand scalar c, the multiplication of scalar cA have the following entries: • (cA)ij = c.(A)ij = caij • Note: In the set of Mmxn, the matrix multiplication with scalar have closed properties (it will have matrix with the same orrdo) Matriks
1 4 -9 3 7 0 5 9 -13 K = 4 16 -36 12 28 0 20 36 -52 4K = 5 20 -45 15 35 0 25 45 -65 5K = OPERASI MATRIKS • K 3 x 3 Matriks
1 4 -9 3 7 0 5 9 -13 K = 4 16 -36 12 28 0 20 36 -52 4K = 5 20 -45 15 35 0 25 45 -65 5K = OPERATION OF MATRIX • K 3 x 3 Matriks
7 2 • 5 2 6 A = 0 0 0 0 0 0 0 0 0 0 0 0 A = = 0*2 0*7 0*2 0*5 0*2 0*6 7*0 7*0 7*0 7*0 7*0 7*0 cA = cA = OPERASI MATRIKS • Diketahui bahwa cA adalah matriks nol. Apa kesimpulan Anda tentang A dan c? Contoh: c = 7 c = 0 kesimpulan Kasus 1: c = 0 dan A matriks sembarang. Kasus 2: A matriks nol dan c bisa berapa saja. Matriks
7 2 • 5 2 6 A = 0 0 0 0 0 0 0 0 0 0 0 0 A = = 0*2 0*7 0*2 0*5 0*2 0*6 7*0 7*0 7*0 7*0 7*0 7*0 cA = cA = OPERATION OF MATRIX • Known that cA is zero matrix. What is your conclusion about A and c? Example: c = 7 c = 0 Conclusion Case 1: c = 0 and A is any matrix Case 2: A is zero matrix and c can be any number Matriks
∑ aikbkj = ai1b1j +ai2b2j+………airbrj k = 1 1 2 7 -6 4 -9 2 3 4 5 8 -7 9 -4 1 -5 7 -8 A = B = OPERASI MATRIKS Perkalian matriks dengan matriks • Definisi: • Jika A = [aij] berukuran m x r , dan B = [bij] berukuran r x n, maka matriks hasil kali A dan B, yaitu C = AB mempunyai elemen-elemen yang didefinisikan sebagai berikut: r • (C)ij = (AB)ij = A B AB • Syarat: r xn m xn m xr Tentukan AB dan BA Matriks
∑ aikbkj = ai1b1j +ai2b2j+………airbrj k = 1 1 2 7 -6 4 -9 2 3 4 5 8 -7 9 -4 1 -5 7 -8 A = B = OPERATION OF MATRIX Multiplication between matrix • Definition: • If A = [aij] have size m x r , and B = [bij] have size r x n, then the matrix which is from the multiplication result between A and B, yaitu is C = AB has elements that defined as follows: r • (C)ij = (AB)ij = A B AB • Condition: r xn m xn m xr Define AB and BA Matriks